Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorRong-Ho Leeen_US
dc.contributor.authorLee, Chia-Naen_US
dc.identifier.citation1. Smalley, P.R.E. Energy & Nano Technology Conference. P.R.E. Energy & Nano Technology Conference,Rice University May 3,2003. 2. 世界一次能源消費量. 2010. 3. 楊金煥, 太陽能光伏發電應用技術. 太陽能光伏發電應用技術,電子工業出版社 2011. 4. 張正華, 有機與塑膠太陽能電池. 有機與塑膠太陽能電池,五南圖書出版 2008(初版二刷). 5. Goetzberger, A.; Luther, J.; Willeke, G., Solar cells: past, present, future. Solar Energy Materials and Solar Cells 2002, 74, (1–4), 1-11. 6. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. Journal of Chemical Physics 1960, 32, (5), 1505-1514. 7. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, (5), 676-677. 8. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic Solar Cells. Advanced Functional Materials 2001, 11, (1), 15-26. 9. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews 2007, 107, (4), 1324-1338. 10. Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D., Polymer-based solar cells. Materials Today 2007, 10, (11), 28-33. 11. Bundgaard, E.; Hagemann, O.; Manceau, M.; Jorgensen, M.; Krebs, F. C., Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells. Macromolecules 2010, 43, (19), 8115-8120. 12. Hurd, F.; Livingston, R., The Quantum Yields of Some Dye-sensitized Photooxidations. The Journal of Physical Chemistry 1940, 44, (7), 865-873. 13. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 2009, 109, (11), 5868-5923. 14. O''Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, (6346), 737-740. 15. Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123, (8), 1613-1624. 16. Lloyd, M. T.; Anthony, J. E.; Malliaras, G. G., Photovoltaics from soluble small molecules. Materials Today 2007, 10, (11), 34-41. 17. Steinberger, S.; Mishra, A.; Reinold, E.; Levichkov, J.; Uhrich, C.; Pfeiffer, M.; Bauerle, P., Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes. Chemical Communications 2011, 47, (7), 1982-1984. 18. Lin, L.-Y.; Chen, Y.-H.; Huang, Z.-Y.; Lin, H.-W.; Chou, S.-H.; Lin, F.; Chen, C.-W.; Liu, Y.-H.; Wong, K.-T., A Low-Energy-Gap Organic Dye for High-Performance Small-Molecule Organic Solar Cells. Journal of the American Chemical Society 2011, 133, (40), 15822-15825. 19. Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J., Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry B 2005, 109, (19), 9505-9516. 20. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295, (5564), 2425-2427. 21. Advincula, R. C., Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Transactions 2006, (23), 2778-2784. 22. Sang, G.; Zhou, E.; Huang, Y.; Zou, Y.; Zhao, G.; Li, Y., Incorporation of Thienylenevinylene and Triphenylamine Moieties into Polythiophene Side Chains for All-Polymer Photovoltaic Applications. The Journal of Physical Chemistry C 2009, 113, (14), 5879-5885. 23. Sang, G.; Zou, Y.; Huang, Y.; Zhao, G.; Yang, Y., All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Applied physics letters 2009, 94, (19), 193302. 24. Mandoc, M. M.; Veurman, W.; Koster, L. J. A.; Koetse, M. M.; Sweelssen, J., Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells. Journal of Applied Physics 2007, 101, (10), 104512. 25. Nelson, J., Polymer:fullerene bulk heterojunction solar cells. Materials Today 2011, 14, (10), 462-470. 26. Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P., Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2010, 22, (34), 3839-3856. 27. Ross, R. B.; Cardona, C. M.; Guldi, D. M.; Sankaranarayanan, S. G.; Reese, M. O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G. C.; Van Keuren, E.; Holloway, B. C.; Drees, M., Endohedral fullerenes for organic photovoltaic devices. Nat Mater 2009, 8, (3), 208-212. 28. Chen, L.-M.; Hong, Z.; Li, G.; Yang, Y., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Advanced Materials 2009, 21, (14-15), 1434-1449. 29. Hallermann, M.; Kriegel, I.; Da Como, E.; Berger, J. M.; von Hauff, E.; Feldmann, J., Charge Transfer Excitons in Polymer/Fullerene Blends: The Role of Morphology and Polymer Chain Conformation. Advanced Functional Materials 2009, 19, (22), 3662-3668. 30. Dennler, G.; Scharber, M. C.; Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2009, 21, (13), 1323-1338. 31. Xin, H.; Ren, G.; Kim, F. S.; Jenekhe, S. A., Bulk Heterojunction Solar Cells from Poly(3-butylthiophene)/Fullerene Blends: In Situ Self-Assembly of Nanowires, Morphology, Charge Transport, and Photovoltaic Properties. Chemistry of Materials 2008, 20, (19), 6199-6207. 32. Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Frechet, J. M. J., The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. Journal of the American Chemical Society 2008, 130, (48), 16324-16329. 33. Thompson, B. C.; Frechet, J. M. J., Polymer–Fullerene Composite Solar Cells. Angewandte Chemie International Edition 2008, 47, (1), 58-77. 34. Yamamoto, S.; Guo, J.; Ohkita, H.; Ito, S., Formation of Methanofullerene Cation in Bulk Heterojunction Polymer Solar Cells Studied by Transient Absorption Spectroscopy. Advanced Functional Materials 2008, 18, (17), 2555-2562. 35. Moule, A. J.; Meerholz, K., Controlling Morphology in Polymer–Fullerene Mixtures. Advanced Materials 2008, 20, (2), 240-245. 36. Matsuo, Y.; Kanaizuka, K.; Matsuo, K.; Zhong, Y.-W.; Nakae, T.; Nakamura, E., Photocurrent-Generating Properties of Organometallic Fullerene Molecules on an Electrode. Journal of the American Chemical Society 2008, 130, (15), 5016-5017. 37. Dante, M.; Peet, J.; Nguyen, T.-Q., Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy. The Journal of Physical Chemistry C 2008, 112, (18), 7241-7249. 38. Baumann, A.; Lorrmann, J.; Deibel, C.; Dyakonov, V., Bipolar charge transport in poly(3-hexyl thiophene)/methanofullerene blends: A ratio dependent study. Applied physics letters 2008, 93, (25), 252104. 39. Coffey, D. C.; Reid, O. G.; Rodovsky, D. B.; Bartholomew, G. P.; Ginger, D. S., Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy. Nano Letters 2007, 7, (3), 738-744. 40. 各類型太陽能電池光電轉換效率. 2012. 41. Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y., Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photon 2012, 6, (3), 180-185. 42. 美國能源部國家可再生能源實驗室. 2012. 43. G173-03, A., AM0和AM1.5太陽頻譜照度分布. 2012. 44. Hoppe, H.; Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry 2006, 16, (1), 45-61. 45. Brabec, C. J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J. C.; Sariciftci, S., Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters 2001, 340, (3–4), 232-236. 46. Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Muller-Meskamp, L.; Leo, K., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials 2011, 21, (6), 1076-1081. 47. Ahlswede, E.; Hanisch, J.; Powalla, M., Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells. Applied physics letters 2007, 90, (16), 163504. 48. Ghosh, A. K.; Feng, T., Merocyanine organic solar cells. Journal of Applied Physics 1978, 49, (12), 5982-5989. 49. Yu, G.; Zhang, C.; Heeger, A. J., Dualfunction semiconducting polymer devices: Lightemitting and photodetecting diodes. Applied physics letters 1994, 64, (12), 1540-1542. 50. Tang, C. W., Two-layer organic photovoltaic cell. Applied Physics Letters 1986, 48, (2), 183-185. 51. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Exciton diffusion and dissociation in a poly(pphenylenevinylene)/C60 heterojunction photovoltaic cell. Applied physics letters 1996, 68, (22), 3120-3122. 52. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, (5243), 1789-1791. 53. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15, (10), 1617-1622. 54. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials 2006, 18, (5), 572-576. 55. Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences 2008, 105, (8), 2783-2787. 56. Coakley, K. M.; McGehee, M. D., Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Applied physics letters 2003, 83, (16), 3380-3382. 57. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells. Nat Mater 2005, 4, (6), 455-459. 58. Ravirajan, P.; Peiro, A. M.; Nazeeruddin, M. K.; Graetzel, M.; Bradley, D. D. C.; Durrant, J. R.; Nelson, J., Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer. The Journal of Physical Chemistry B 2006, 110, (15), 7635-7639. 59. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005, 4, (11), 864-868. 60. Riedel, I.; von Hauff, E.; Parisi, J.; Martin, N.; Giacalone, F.; Dyakonov, V., Diphenylmethanofullerenes: New and Efficient Acceptors in Bulk-Heterojunction Solar Cells. Advanced Functional Materials 2005, 15, (12), 1979-1987. 61. Shuttle, C. G.; O’Regan, B.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R., Bimolecular recombination losses in polythiophene: Fullerene solar cells. Physical Review B 2008, 78, (11), 113201. 62. Hoppea, H.; Sariciftci, N. S., Organic solar cells: An overview. Journal of Materials Research 2004, 19, (7), 1924-1945. 63. Roncali, J., Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromolecular Rapid Communications 2007, 28, (17), 1761-1775. 64. Wienk, M. M.; Struijk, M. P.; Janssen, R. A. J., Low band gap polymer bulk heterojunction solar cells. Chemical Physics Letters 2006, 422, (4–6), 488-491. 65. Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; Huong Nguyen, L.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E., Low Band Gap Donor−Acceptor Conjugated Polymers toward Organic Solar Cells Applications. Macromolecules 2006, 40, (1), 65-72. 66. Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. Journal of the American Chemical Society 2008, 130, (48), 16144-16145. 67. Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K., Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules 2008, 41, (22), 8302-8305. 68. Hou, J.; Chen, H.-Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G., Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society 2009, 131, (43), 15586-15587. 69. Choi, S. H.; Frisbie, C. D., Enhanced Hopping Conductivity in Low Band Gap Donor−Acceptor Molecular Wires Up to 20 nm in Length. Journal of the American Chemical Society 2010, 132, (45), 16191-16201. 70. Tsai, J.-H.; Chueh, C.-C.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C.; Chen, E.-C.; Meng, H.-F., New thiophene-phenylene-thiophene acceptor random conjugated copolymers for optoelectronic applications. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (11), 2351-2360. 71. Tsai, J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C., Synthesis of New Indolocarbazole-Acceptor Alternating Conjugated Copolymers and Their Applications to Thin Film Transistors and Photovoltaic Cells. Macromolecules 2009, 42, (6), 1897-1905. 72. Lee, W.-Y.; Cheng, K.-F.; Wang, T.-F.; Chen, W.-C.; Tsai, F.-Y., Photovoltaic properties of low-band-gap fluorene-based donor–acceptor copolymers. Thin Solid Films 2010, 518, (8), 2119-2123. 73. Li, Y.; Zou, Y., Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility. Advanced Materials 2008, 20, (15), 2952-2958. 74. Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y., Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. Journal of the American Chemical Society 2006, 128, (14), 4911-4916. 75. Zhou, E.; Tan, Z. a.; Huo, L.; He, Y.; Yang, C.; Li, Y., Effect of Branched Conjugation Structure on the Optical, Electrochemical, Hole Mobility, and Photovoltaic Properties of Polythiophenes. The Journal of Physical Chemistry B 2006, 110, (51), 26062-26067. 76. Tan, Z. a.; Zhou, E.; Yang, Y.; He, Y.; Yang, C.; Li, Y., Synthesis, characterization and photovoltaic properties of thiophene copolymers containing conjugated side-chain. European Polymer Journal 2007, 43, (3), 855-861. 77. Sang, G.; Zou, Y.; Li, Y., Two Polythiophene Derivatives Containing Phenothiazine Units: Synthesis and Photovoltaic Properties. The Journal of Physical Chemistry C 2008, 112, (31), 12058-12064. 78. Hou, J.; Huo, L.; He, C.; Yang, C.; Li, Y., Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl)thiophene)s with Conjugated Side Chains. Macromolecules 2005, 39, (2), 594-603. 79. Hou, J.; Tan, Z. a.; He, Y.; Yang, C.; Li, Y., Branched Poly(thienylene vinylene)s with Absorption Spectra Covering the Whole Visible Region. Macromolecules 2006, 39, (14), 4657-4662. 80. Tan, Z. a.; Hou, J.; He, Y.; Zhou, E.; Yang, C.; Li, Y., Synthesis and Photovoltaic Properties of a Donor−Acceptor Double-Cable Polythiophene with High Content of C60 Pendant. Macromolecules 2007, 40, (6), 1868-1873. 81. Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Li, Y., Polythiophene Derivative with Phenothiazine−Vinylene Conjugated Side Chain:  Synthesis and Its Application in Field-Effect Transistors. Macromolecules 2007, 40, (20), 7231-7237. 82. Li, H.; Parameswaran, M.; Nurmawati, M. H.; Xu, Q.; Valiyaveettil, S., Synthesis and Structure−Property Investigation of Polyarenes with Conjugated Side Chains. Macromolecules 2008, 41, (22), 8473-8482. 83. Huo, L.; Chen, T. L.; Zhou, Y.; Hou, J.; Chen, H.-Y.; Yang, Y.; Li, Y., Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules 2009, 42, (13), 4377-4380. 84. Huo, L.; Tan, Z. a.; Wang, X.; Zhou, Y.; Han, M.; Li, Y., Novel two-dimensional donor–acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, (12), 4038-4049. 85. Hou, J.; Yang, C.; Li, Y., Synthesis of regioregular side-chain conjugated polythiophene and its application in photovoltaic solar cells. Synthetic Metals 2005, 153, (1–3), 93-96. 86. Zhou, E.; He, C.; Tan, Z. A.; Yang, C.; Li, Y., Effect of side-chain end groups on the optical, electrochemical, and photovoltaic properties of side-chain conjugated polythiophenes. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, (16), 4916-4922. 87. Zou, Y.; Sang, G.; Wu, W.; Liu, Y.; Li, Y., A polythiophene derivative with octyloxyl triphenylamine-vinylene conjugated side chain: Synthesis and its applications in field-effect transistor and polymer solar cell. Synthetic Metals 2009, 159, (3–4), 182-187. 88. Tan, Z. a.; Tang, R.; Zhou, E.; He, Y.; Yang, C.; Xi, F.; Li, Y., Electroluminescence and photovoltaic properties of poly(p-phenylene vinylene) derivatives with dendritic pendants. Journal of Applied Polymer Science 2008, 107, (1), 514-521. 89. Huo, L.; Tan, Z. a.; Zhou, Y.; Zhou, E.; Han, M.; Li, Y., Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band. Macromolecular Chemistry and Physics 2007, 208, (12), 1294-1300. 90. Shen, P.; Sang, G.; Lu, J.; Zhao, B.; Wan, M.; Zou, Y.; Li, Y.; Tan, S., Effect of 3D π−π Stacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. Macromolecules 2008, 41, (15), 5716-5722. 91. Huo, L.; Zhou, Y.; Li, Y., Alkylthio-Substituted Polythiophene: Absorption and Photovoltaic Properties. Macromolecular Rapid Communications 2009, 30, (11), 925-931. 92. Chang, Y. T.; Hsu, S. L.; Su, M. H.; Wei, K. H., Soluble Phenanthrenyl-Imidazole-Presenting Regioregular Poly(3-octylthiophene) Copolymers Having Tunable Bandgaps for Solar Cell Applications. Advanced Functional Materials 2007, 17, (16), 3326-3331. 93. Chang, Y.-T.; Hsu, S.-L.; Chen, G.-Y.; Su, M.-H.; Singh, T. A.; Diau, E. W.-G.; Wei, K.-H., Intramolecular Donor–Acceptor Regioregular Poly(3-hexylthiophene)s Presenting Octylphenanthrenyl-Imidazole Moieties Exhibit Enhanced Charge Transfer for Heterojunction Solar Cell Applications. Advanced Functional Materials 2008, 18, (16), 2356-2365. 94. Chang, Y.-T.; Hsu, S.-L.; Su, M.-H.; Wei, K.-H., Intramolecular Donor–Acceptor Regioregular Poly(hexylphenanthrenyl-imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications. Advanced Materials 2009, 21, (20), 2093-2097. 95. Peeters, H.; Verbiest, T.; Koeckelberghs, G., Incorporation of a conjugated side-chain in regioregular polythiophenes: Chiroptical properties and selective oxidation. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, (7), 1891-1900. 96. Yu, C.-Y.; Ko, B.-T.; Ting, C.; Chen, C.-P., Two-dimensional regioregular polythiophenes with conjugated side chains for use in organic solar cells. Solar Energy Materials and Solar Cells 2009, 93, (5), 613-620. 97. Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K. Y., Development of New Conjugated Polymers with Donor−π-Bridge−Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society 2009, 131, (39), 13886-13887. 98. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials 2006, 18, (6), 789-794. 99. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M., Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society 2008, 130, (2), 732-742. 100. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Advanced Materials 2011, 23, (20), 2367-2371. 101. Hou, J.; Chen, T. L.; Zhang, S.; Huo, L.; Sista, S.; Yang, Y., An Easy and Effective Method To Modulate Molecular Energy Level of Poly(3-alkylthiophene) for High-Voc Polymer Solar Cells. Macromolecules 2009, 42, (23), 9217-9219. 102. Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganas, O., Polymer Solar Cells Based on a Low-Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm. Advanced Functional Materials 2005, 15, (5), 745-750. 103. Park, J. Y.; Koenen, N.; Forster, M.; Ponnapati, R.; Scherf, U.; Advincula, R., Interplay of Vesicle and Lamellae Formation in an Amphiphilic Polyfluorene-b-polythiophene All-Conjugated Diblock Copolymer at the Air−Water Interface. Macromolecules 2008, 41, (16), 6169-6175. 104. Chen, M.-H.; Hou, J.; Hong, Z.; Yang, G.; Sista, S.; Chen, L.-M.; Yang, Y., Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions. Advanced Materials 2009, 21, (42), 4238-4242. 105. Skabara, P. J.; Berridge, R.; Serebryakov, I. M.; Kanibolotsky, A. L.; Kanibolotskaya, L.; Gordeyev, S.; Perepichka, I. F.; Sariciftci, N. S.; Winder, C., Fluorene functionalised sexithiophenes-utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. Journal of Materials Chemistry 2007, 17, (11), 1055-1062. 106. Mondal, R.; Becerril, H. A.; Verploegen, E.; Kim, D.; Norton, J. E.; Ko, S.; Miyaki, N.; Lee, S.; Toney, M. F.; Bredas, J.-L.; McGehee, M. D.; Bao, Z., Thiophene-rich fused-aromatic thienopyrazine acceptor for donor-acceptor low band-gap polymers for OTFT and polymer solar cell applications. Journal of Materials Chemistry 2010, 20, (28), 5823-5834. 107. Schulz, G. L.; Chen, X.; Holdcroft, S., High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with [6,6]- phenyl C61 butyric acid methyl ester for use in efficient photovoltaic devices. Applied physics letters 2009, 94, (2), 023302. 108. Wakim, S.; Beaupre, S.; Blouin, N.; Aich, B.-R.; Rodman, S.; Gaudiana, R.; Tao, Y.; Leclerc, M., Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative. Journal of Materials Chemistry 2009, 19, (30), 5351-5358. 109. Beaupre, S.; Boudreault, P.-L. T.; Leclerc, M., Solar-Energy Production and Energy-Efficient Lighting: Photovoltaic Devices and White-Light-Emitting Diodes Using Poly(2,7-fluorene), Poly(2,7-carbazole), and Poly(2,7-dibenzosilole) Derivatives. Advanced Materials 2010, 22, (8), E6-E27. 110. Xia, Y.; Su, X.; He, Z.; Ren, X.; Wu, H.; Cao, Y.; Fan, D., An Alternating Copolymer Derived from Indolo[3,2-b]carbazole and 4,7-Di(thieno[3,2-b]thien-2-yl)-2,1,3-benzothiadiazole for Photovoltaic Cells. Macromolecular Rapid Communications 2010, 31, (14), 1287-1292. 111. Zhou, E.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K., Indolo[3,2-b]carbazole-based alternating donor-acceptor copolymers: synthesis, properties and photovoltaic application. Journal of Materials Chemistry 2009, 19, (41), 7730-7737. 112. Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M., Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Advanced Functional Materials 2006, 16, (13), 1694-1704. 113. Chul Kim, S.; Vijaya Kumar Naidu, B.; Lee, S.-K.; Shin, W.-S.; Jin, S.-H.; Jung, S.-J.; Cho, Y.-R.; Shim, J.-M.; Kook Lee, J.; Wook Lee, J.; Hyeon Kim, J.; Gal, Y.-S., Synthesis and photovoltaic properties of novel PPV-derivatives tethered with spiro-bifluorene unit for polymer solar cells. Solar Energy Materials and Solar Cells 2007, 91, (6), 460-466. 114. Yu, C.-Y.; Chen, C.-P.; Chan, S.-H.; Hwang, G.-W.; Ting, C., Thiophene/Phenylene/Thiophene-Based Low-Bandgap Conjugated Polymers for Efficient Near-Infrared Photovoltaic Applications. Chemistry of Materials 2009, 21, (14), 3262-3269. 115. Chan, S.-H.; Chen, C.-P.; Chao, T.-C.; Ting, C.; Lin, C.-S.; Ko, B.-T., Synthesis, Characterization, and Photovoltaic Properties of Novel Semiconducting Polymers with Thiophene−Phenylene−Thiophene (TPT) as Coplanar Units. Macromolecules 2008, 41, (15), 5519-5526. 116. Zhao, N.; Botton, G. A.; Zhu, S.; Duft, A.; Ong, B. S.; Wu, Y.; Liu, P., Microscopic Studies on Liquid Crystal Poly(3,3‘ ‘‘-dialkylquaterthiophene) Semiconductor. Macromolecules 2004, 37, (22), 8307-8312. 117. McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F., Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 2006, 5, (4), 328-333. 118. Lim, B.; Baeg, K.-J.; Jeong, H.-G.; Jo, J.; Kim, H.; Park, J.-W.; Noh, Y.-Y.; Vak, D.; Park, J.-H.; Park, J.-W.; Kim, D.-Y., A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thin-Film Transistors and Solar Cells. Advanced Materials 2009, 21, (27), 2808-2814. 119. Saeki, A.; Fukumatsu, T.; Seki, S., Intramolecular Charge Carrier Mobility in Fluorene-Thiophene Copolymer Films Studied by Microwave Conductivity. Macromolecules 2011, 44, (9), 3416-3424. 120. Fong, H. H.; Papadimitratos, A.; Malliaras, G. G., Nondispersive hole transport in a polyfluorene copolymer with a mobility of 0.01cm2V−1s−1. Applied physics letters 2006, 89, (17), 172116. 121. Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D., Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional Materials 2009, 19, (8), 1173-1179. 122. Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. Journal of the American Chemical Society 2009, 131, (22), 7792-7799. 123. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials 2010, 22, (20), E135-E138. 124. Mayerhoffer, U.; Deing, K.; Grus, K.; Braunschweig, H.; Meerholz, K.; Wurthner, F., Outstanding Short-Circuit Currents in BHJ Solar Cells Based on NIR-Absorbing Acceptor-Substituted Squaraines. Angewandte Chemie International Edition 2009, 48, (46), 8776-8779.en_US
dc.description.abstract本研究主鏈分別選用烷基取代的共軛噻吩(Thiophene, T)與芴(Fluorene, F),側鏈導入拉電子基團2,2’-亞甲基雙苯並噻唑(Dibenzo[d]thiazol-2-ylmethane, DBT)經Stille coupling反應聚合一系列低能隙之P型共軛高分子。探討並比較噻吩與芴之間共軛穩定性不同的差異。此系列之共軛高分子皆可溶於一般有機溶劑,且具備良好熱穩定性。 由紫外光-可見光光譜發現,三噻吩系列材料之光譜吸收範圍較芴系列高分子為寬,並有效調整HOMO能階在理想範圍內(-5.2~ -5.8 eV)。 進一步將共軛噻吩系列之高分子製備成順式(Conventional)與反式(Inverted)元件結構之太陽能電池,高分子在光伏性質表現上,開路電壓介於0.41~ 0.76 V,短路電流密度介於2.86 ~ 7.67 mA/cm2,填充因子介於0.29 ~ 0.35之間。其中以順式元件共軛高分子PTDBT/PC71BM(w/w = 1/2.5)經100 ℃熱處理製備之太陽能電池具有最高光電轉換效率為1.55 %,其開路電壓為0.67 V,短路電流為7.67 mA/cm2,填充因子為0.30。zh_TW
dc.description.abstractA series of low-band gap of P-type conjugated polymers via Stille coupling reactions. The main chain is selected containing alkyl-substituted conjugated thiophene and fluorene, and side chain import electron- withdrawing group Dibenzo[d]thiazol 2-ylmethane(DBT). Comparative conjugated different stability differences between the thiophene and fluorene. All polymers exhibited good solubility in common organic solvents, and have good thermal stability. A red-shift of UV-vis absorption band was observed for the polythiophene, and successfully control the HOMO energy levels within the ideal range(-5.2 ~ -5.8 eV). Further conjugated thiophene series of polymer prepared cis and trans device structure of solar cells. In the photovoltaic properties of the open-circuit voltage(Voc)is between 0.41 ~ 0.76 V, short-circuit current (Jsc)is between 2.86 ~ 7.67 mA/cm2, fill factor(FF)is between 0.29 ~ 0.35. Wherein the conjugated polymer PTDBT/PC71BM(w/w = 1/2.5)via 100℃ annealing, the prepared solar cells having the best performance was achieved in the following: a photoelectric conversion efficiency (PCE) of 1.55%, a Voc of 0.67 V, Jsc of 7.67 mA/cm2, and a FF of 0.3 under illumination of AM 1.5, 100 mW/cm2.en_US
dc.description.tableofcontents誌謝 I 摘要 II Abstract III 表目錄 VI 圖目錄 VII 公式目錄 X 第一章 緒論 1 1.1 前言 1 1.2 太陽能發展歷史與有機太陽能電池的優勢與分類 4 1.3 太陽光頻譜與太陽能電池特性參數 11 1.4 有機高分子太陽能電池工作原理 14 1.5 高分子太陽能電池結構演進 17 第二章 文獻回顧與研究動機 19 2.1 能隙的調控 21 2.2 材料能階與元件開路電壓的關係 25 2.3 降低材料HOMO能階 27 2.4 提升材料載子傳輸能力 28 2.5 增進材料與碳球衍生物的奈米尺度混摻相位 30 2.6 研究動機 32 第三章 實驗內容 35 3.1 使用藥品與溶劑 35 3.2 使用儀器 38 3.3 合成流程 42 第四章 結果與討論 60 4.1 共軛高分子基本特性 60 4.2 光學特性 64 4.3 電化學特性 70 4.4 元件光伏特性質分析 72 第五章 結論 74 參考文獻 75 附錄 83zh_TW
dc.subjectsolar cellen_US
dc.subjectconjugated copolymersen_US
dc.titlePolythiophene-Based Conjugated Copolymers Comprising Dibenzo[d]thiazol-2-ylmethane Pendant for Photovoltaic Applicationsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.