Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3187
標題: 兩性型規則樹枝狀高分子應用於製備多孔性蜂窩狀聚乳酸高分子膜之研究
Honeycomb-like Poly(D,L-lactide) Films Based on Amphiphilic Poly(urea/malonamide) Dendrons
作者: 吳建欣
Wu, Chien-Hsin
關鍵字: 規則蜂窩狀高分子膜;Honeycomb;樹枝狀高分子;界面活性劑;Dendrimer;Surfactant
出版社: 化學工程學系所
引用: 1.S.-W. Choi, Y. Zhang, Y.-C. Yeh, A. Lake Wooten, Y. Xia, Biodegradable porous beads and their potential applications in regenerative medicine. Journal of Materials Chemistry 22, 11442 (2012). 2.I. Muylaert, A. Verberckmoes, J. De Decker, P. Van Der Voort, Ordered mesoporous phenolic resins: Highly versatile and ultra stable support materials. Advances in Colloid and Interface Science 175, 39 (2012). 3.T. P. Nguyen, P. L. Rendu, V. H. Tran, V. Parkhutik, R. F. Esteve, Electrical and Optical Properties of Conducting Polymer/Porous Silicon Structures. Journal of Porous Materials 7, 393 (2000). 4.M. Bokhari, R. J. Carnachan, S. A. Przyborski, N. R. Cameron, Emulsion-templated porous polymers as scaffolds for three dimensional cell culture: effect of synthesis parameters on scaffold formation and homogeneity. Journal of Materials Chemistry 17, 4088 (2007). 5.G. Tan, M. Singh, J. He, V. T. John, G. L. McPherson, Use of a Self-Assembling Organogel as a Reverse Template in the Preparation of Imprinted Porous Polymer Films. Langmuir 21, 9322 (2005). 6.Rayleigh, Breath Figures. Nature 90, 436 (1911). 7.Rayleigh, Breath Figures. Nature 86, 416 (1911). 8.G. Widawski, M. Rawiso, B. Francois, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387 (1994). 9.N. Maruyama et al., Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327–329, 854 (1998). 10.M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. Science 292, 79 (2001). 11.M. Hernandez-Guerrero, M. H. Stenzel, Honeycomb structured polymer films via breath figures. Polymer Chemistry 3, 563 (2012). 12.J. Poly et al., Nanogels Based on Poly(vinyl acetate) for the Preparation of Patterned Porous Films. Langmuir 27, 4290 (2011/04/19, 2011). 13.B. Erdogan et al., Permanent Bubble Arrays from a Cross-Linked Poly(para-phenyleneethynylene):  Picoliter Holes without Microfabrication. Journal of the American Chemical Society 126, 3678 (2004). 14.J. Peng, Y. Han, Y. Yang, B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447 (2004). 15.C. Liu, C. Gao, D. Yan, Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew Chem Int Ed Engl 46, 4128 (2007). 16.W. Madej, A. Budkowski, J. Raczkowska, J. Rysz, Breath Figures in Polymer and Polymer Blend Films Spin-Coated in Dry and Humid Ambience. Langmuir 24, 3517 (2008). 17.A. Boker et al., Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat Mater 3, 302 (2004). 18.J. H. Kim, M. Seo, S. Y. Kim, Lithographically Patterned Breath Figure of Photoresponsive Small Molecules: Dual-Patterned Honeycomb Lines from a Combination of Bottom-Up and Top-Down Lithography. Adv. Mater. (Weinheim, Ger.) 21, 4130 (2009). 19.O. Karthaus et al., Water-Assisted Formation of Micrometer-Size Honeycomb Patterns of Polymers. Langmuir 16, 6071 (2000). 20.U. H. F. Bunz, Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Advanced Materials 18, 973 (2006). 21.H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura, Preparation of Honeycomb-Patterned Polyimide Films by Self-Organization. Langmuir 19, 6297 (2003). 22.H. Yabu, M. Takebayashi, M. Tanaka, M. Shimomura, Superhydrophobic and Lipophobic Properties of Self-Organized Honeycomb and Pincushion Structures. Langmuir 21, 3235 (2005). 23.F. Galeotti, A. Andicsova, S. Yunus, C. Botta, Precise surface patterning of silk fibroin films by breath figures. Soft Matter 8, 4815 (2012). 24.L. A. Connal, G. G. Qiao, Preparation of Porous Poly(dimethylsiloxane)-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates. Advanced Materials 18, 3024 (2006). 25.M. H. Stenzel, C. Barner-Kowollik, T. P. Davis, Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 44, 2363 (2006). 26.L. Li et al., Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. Journal of Materials Chemistry 19, 2789 (2009). 27.M. Du et al., Honeycomb Self-Assembled Peptide Scaffolds by the Breath Figure Method. Chemistry – A European Journal 17, 4238 (2011). 28.Y. Han et al., Fabrication of conducting polypyrrole film with microlens arrays by combination of breath figures and replica molding methods. Polymer 53, 2599 (2012). 29.C. Yu et al., Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film. The Journal of Physical Chemistry B 108, 4586 (2004). 30.M. H. Stenzel-Rosenbaum, T. P. Davis, A. G. Fane, V. Chen, Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques. Angewandte Chemie International Edition 40, 3428 (2001). 31.M. H. Stenzel, T. P. Davis, A. G. Fane, Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry 13, 2090 (2003). 32.X. Hao, M. H. Stenzel, C. Barner-Kowollik, T. P. Davis, E. Evans, Molecular composite materials formed from block copolymers containing a side-chain liquid crystalline segment and an amorphous styrene/maleic anhydride segment. Polymer 45, 7401 (2004). 33.V. D. Deepak, S. K. Asha, Self-Organization-Induced Three-Dimensional Honeycomb Pattern in Structure-Controlled Bulky Methacrylate Polymers:  Synthesis, Morphology, and Mechanism of Pore Formation. The Journal of Physical Chemistry B 110, 21450 (2006). 34.J.-Z. Chen et al., Polymethylene-b-polystyrene diblock copolymer: Synthesis, property, and application. Journal of Polymer Science Part A: Polymer Chemistry 48, 1894 (2010). 35.A. S. de León, A. del Campo, M. Fernández-García, J. Rodríguez-Hernández, A. Muñoz-Bonilla, Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir, (2012). 36.D. A. Tomalia, Supramolecular chemistry: Fluorine makes a difference. Nat Mater 2, 711 (2003). 37.D. A. Tomalia, J. M. J. Fréchet, Discovery of dendrimers and dendritic polymers: A brief historical perspective*. Journal of Polymer Science Part A: Polymer Chemistry 40, 2719 (2002). 38.C. C. Lee, J. A. MacKay, J. M. Frechet, F. C. Szoka, Designing dendrimers for biological applications. Nature biotechnology 23, 1517 (2005). 39.E. Buhleier, W. Wehner, and F. Vögtle, , "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis 55, 155 (1978). 40.D. A. Tomalia et al., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 17, 117 (1985). 41.C. J. Hawker, J. M. Frechet, Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638 (1990). 42.D. A. Tomalia, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 30, 294 (2005). 43.L. Zhao, Z. Lin, Self-assembly of non-linear polymers at the air/water interface: the effect of molecular architecture. Soft Matter 7, 10520 (2011). 44.D. J. Pesak, J. S. Moore, Polar domains on globular macromolecules: Shape-persistent, amphiphilic tridendrons. Tetrahedron 53, 15331 (1997). 45.G. M. Whitesides, B. Grzybowski, Self-Assembly at All Scales. Science 295, 2418 (2002). 46.S. D. Hudson, Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers. Science 278, 449 (1997). 47.V. Percec et al., Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161 (1998). 48.V. Percec, W.-D. Cho, G. Ungar, Increasing the Diameter of Cylindrical and Spherical Supramolecular Dendrimers by Decreasing the Solid Angle of Their Monodendrons via Periphery Functionalization. Journal of the American Chemical Society 122, 10273 (2000). 49.D. J. Hourston, Book review: Chemistry and technology of isocyanates, Henri Ulrich. John Wiley and Sons Ltd, Chichester, UK, 1996. pp. ix+489, price £80.00. ISBN 0-471-96371-2. Polymer International 45, 127 (1998). 50.C. Park et al., Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proceedings of the National Academy of Sciences of the United States of America 103, 1199 (2006). 51.C. Cheng, Y. Tian, Y. Shi, R. Tang, F. Xi, Ordered Honeycomb-Structured Films from Dendronized PMA-b-PEO Rod-Coil Block Copolymers. Macromolecular Rapid Communications 26, 1266 (2005). 52.C. X. Cheng, Y. Tian, Y. Q. Shi, R. P. Tang, F. Xi, Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 21, 6576 (2005). 53.L. A. Connal, R. Vestberg, C. J. Hawker, G. G. Qiao, Dramatic morphology control in the fabrication of porous polymer films. Adv. Funct. Mater. 18, 3706 (2008). 54.F. Gong et al., Biodegradable comb-dendritic tri-block copolymers consisting of poly(ethylene glycol) and poly(-lactide): Synthesis, characterizations, and regulation of surface morphology and cell responses. Polymer 50, 2775 (2009). 55.S.-J. Hsieh, C.-C. Wang, C.-Y. Chen, Self-Assembling Microporous Matrix from Dendritic-Linear Copolymers Based on a Solvent-Induced Phase Separation Mechanism. Macromolecules (Washington, DC, U. S.) 42, 4787 (2009). 56.W.-H. Ting et al., Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation. Journal of Materials Chemistry 19, 4819 (2009). 57.C.-C. Chang et al., Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Mater. Chem. Phys. 128, 157 (2011). 58.P. Lundberg et al., Linear dendritic polymeric amphiphiles with intrinsic biocompatibility: synthesis and characterization to fabrication of micelles and honeycomb membranes. Polym. Chem. 2, 394 (2011). 59.Y. Zhu et al., Honeycomb-Structured Films by Multifunctional Amphiphilic Biodegradable Copolymers: Surface Morphology Control and Biomedical Application as Scaffolds for Cell Growth. ACS Applied Materials & Interfaces 3, 2487 (2011). 60.S. A. Dai et al., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. Journal of Applied Polymer Science 103, 3591 (2007). 61.陳威帆, 利用規則樹枝狀高分子製備具親疏水調控型蜂窩狀薄膜材料. 國立中興大學化學工程學系碩士班學位論文, (2011). 62.Y. Fukuhira, H. Yabu, K. Ijiro, M. Shimomura, Interfacial tension governs the formation of self-organized honeycomb-patterned polymer films. Soft Matter 5, 2037 (2009). 63.Jan Szymanowski, Michael Cox, C. G. Hirons, The Determination of Hydrophilic Lipophilic Balance Values for Some Hydroxyoximes and Their Correlation with Rates of Copper Extraction. J. Chem. Tech. Biotechnol, 218 (1984). 64.W. C. Griffin, CLASSIFICATION OF SURFACE-ACTIVE AGENTS BY "HLB". JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, (1949). 65.小田良平, 寺村一広, 界面活性劑の合成と其應用. 槙書店, 501 (1977). 66.X. Guo, Z. Rong, X. Ying, Calculation of hydrophile–lipophile balance for polyethoxylated surfactants by group contribution method. Journal of Colloid and Interface Science 298, 441 (2006). 67.L. I. Osipow, Surfactant Chemistry Theory and Industrial Application. 18 (1977). 68.P. L. Du Noüy, AN INTERFACIAL TENSIOMETER FOR UNIVERSAL USE. The Journal of General Physiology, 625 (1925). 69.W. D. Harkins, H. F. Jordan, A METHOD FOR THE DETERMINATION OF SURFACE AND INTERFACIAL TENSION FROM THE MAXIMUM PULL ON A RING. J. Am. Chem. Soc. 52, 1751 (1930). 70.R. M. Rasal, A. V. Janorkar, D. E. Hirt, Poly(lactic acid) modifications. Progress in Polymer Science 35, 338 (2010). 71.C. Schugens, V. Maquet, C. Grandfils, R. Jerome, P. Teyssie, Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation. Polymer 37, 1027 (1996). 72.L. T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid). Progress in Polymer Science 33, 820 (2008). 73.H. David, G. Patrick, L. Jim, R. Jed, in Natural Fibers, Biopolymers, and Biocomposites. (2005). 74.A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, R. M. Filho, Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances 30, 321 (2012). 75.Y. Su et al., A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. Journal of Materials Chemistry 20, 6734 (2010). 76.Y. Fukuhira et al., Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine. Biomaterials 27, 1797 (2006). 77.P. Escalé, L. Rubatat, L. Billon, M. Save, Recent advances in honeycomb-structured porous polymer films prepared via breath figures. European Polymer Journal 48, 1001 (2012). 78.T. W. G. Solomons, Organic Chemistry 6th Edition. 263 (1996). 79.T. T. Thomas, Ketenes. John Wiley & Sons, 38 (1995). 80.F. Vögtle, Dendrimers II : Architecture, Nanostructure and Supramolecular Chemistry. Topics in Current Chemistry 210, 3 (2000). 81.J. Chen, X. Yan, Q. Zhao, L. Li, F. Huang, Adjustable supramolecular polymer microstructures fabricated by the breath figure method. Polymer Chemistry 3, 458 (2012). 82.Y. Xu, B. Zhu, Y. Xu, A study on formation of regular honeycomb pattern in polysulfone film. Polymer 46, 713 (2005). 83.W. Dong et al., Honeycomb-Structured Microporous Films Made from Hyperbranched Polymers by the Breath Figure Method. Langmuir 25, 173 (2008). 84.A. Muñoz-Bonilla, E. Ibarboure, E. Papon, J. Rodriguez-Hernandez, Self-Organized Hierarchical Structures in Polymer Surfaces: Self-Assembled Nanostructures within Breath Figures. Langmuir 25, 6493 (2009). 85.R. Dong, J. Yan, H. Ma, Y. Fang, J. Hao, Dimensional Architecture of Ferrocenyl-Based Oligomer Honeycomb-Patterned Films: From Monolayer to Multilayer. Langmuir 27, 9052 (2011). 86.D. Jurašin, I. Habuš, N. Filipović-Vinceković, Role of the alkyl chain number and head groups location on surfactants self-assembly in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 368, 119 (2010). 87.P. Duan, M. Liu, Design and Self-Assembly of l-Glutamate-Based Aromatic Dendrons as Ambidextrous Gelators of Water and Organic Solvents†. Langmuir 25, 8706 (2009). 88.M. Seo, G. Seo, S. Y. Kim, Molecular Self-Assembly of Macroporous Parallelogrammatic Pipes. Angewandte Chemie International Edition 45, 6306 (2006). 89.M. Seo, B. J. Beck, J. M. J. Paulusse, C. J. Hawker, S. Y. Kim, Polymeric Nanoparticles via Noncovalent Cross-Linking of Linear Chains. Macromolecules 41, 6413 (2008). 90.V. Percec et al., Self-Assembly of Semifluorinated Janus-Dendritic Benzamides into Bilayered Pyramidal Columns. Angewandte Chemie International Edition 44, 4739 (2005). 91.Y. Kim, J. Pyun, J. M. J. Fréchet, C. J. Hawker, C. W. Frank, The Dramatic Effect of Architecture on the Self-Assembly of Block Copolymers at Interfaces. Langmuir 21, 10444 (2005). 92.M. Murat, G. S. Grest, Molecular Dynamics Study of Dendrimer Molecules in Solvents of Varying Quality. Macromolecules 29, 1278 (1996). 93.X. Zhai et al., Amphiphilic Dendritic Molecules:  Hyperbranched Polyesters with Alkyl-Terminated Branches. Macromolecules 36, 3101 (2003). 94.G. N. Njikang, L. Cao, M. Gauthier, Self-Assembly of Arborescent Polystyrene-graft-Poly(ethylene oxide) Copolymers at the Air/Water Interface. Macromolecular Chemistry and Physics 209, 907 (2008). 95.C. Kim et al., Supramolecular Assembly of Amide Dendrons. Journal of the American Chemical Society 123, 5586 (2001). 96.L. C. Palmer, S. I. Stupp, Molecular Self-Assembly into One-Dimensional Nanostructures. Accounts of Chemical Research 41, 1674 (2008). 97.D. Chandler, Interfaces and the driving force of hydrophobic assembly. Nature 437, 640 (2005).
摘要: 
本研究將兩性型的dendron當作界面活性劑,混摻入高分子溶液,再利用高濕度空氣當驅動力,使具有的自組裝能力的dendron排列在液滴外圍,並防止液滴聚集;未聚集的液滴經過排列之後,形成規則六角形孔洞的honeycomb。
實驗使用的poly (urea/malonamide) dendrons,內部是相對親水性,具有強氫鍵的urea/malonamide結構;外圍是相對疏水性,具有較強凡得瓦力的長烷鏈段,高代數下長烷鏈段較多,氫鍵較豐富,形成的兩性高分子親疏水平衡較佳,也使得蜂窩狀多孔膜的規則性與代數呈高度相關。
進一步將dendrons焦點開環,藉由接上不同醇基數目的官能基,來改變dendron焦點的親水性,搭配代數的變化造成末端長烷鍊段數目的改變,合成出一系列氫鍵數目與凡德瓦力不同的兩性型dendron。dendron的焦點分別接上帶有兩個醇與三級胺的雙醇系列(A series),只接上一個醇的單醇系列(E series),以及純粹烷基沒有醇的無醇烷基系列(B series),實驗結果也發現,焦點官能基的變化同樣也會對孔洞型態產生重大影響。
使用具有兩個醇基與一個三級胺官能基的APDEA開環,反應成具有長碳鏈的2.5代兩性型A-[G-2.5]-C18 dendron,具有相當豐富強氫鍵與較強凡德瓦力;混摻入聚乳酸高分子,進行Breath Figure之後,生成高規則度的單層與多層蜂窩狀高分子膜。除了代數、焦點與末端官能基,混摻濃度與溶劑量皆影響最後孔洞的形成。
除了嘗試討論親疏水平衡HLB值,利用理論計算來評估Dendron的界面活性能力之外,還使用拉環法,得到與表面形態結果相吻合的實驗值。透過量測不同溶質濃度的界面張力,可動態觀察到Breath Figure過程中界面張力的變化。
為了增加蜂窩狀孔洞的應用性,我們選用了生物可相容性的PLA,實驗嘗試了應用在生醫與光學繞射薄膜的領域上。

A building block, 4-isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino) diphenylmethane (IDD), featuring dual functional groups, has a highly reactive isocyanate functional group, and a selectively reactive azetidine-2,4–dione functional group. Utilizing high reactivity of isocyanate and selective reactivity of azetidine-2,4-dione, higher generation poly(urea/malonamide) dendrons were obtained by addition reaction with another building block diethyltriamine (DETA). The sequential addition reactions were developed under mild condition without resorting to painstaking protection-deprotection or activation methodology. Besides, a convergent synthesis approach made it much easier to remove impurities.
Higher generation dendrons exihibited better hydrophilic/ hydrophobic balance owing to their abundance of urea/malonamide linkages and peripheral long alkyl chains. Furthermore, A-[G-2.5]-C18 ,2.5 generation dendron with 18 carbons long alkyl chain react with APDEA , patterned the best morphology. Bearing two alcohols and a tertiary amine exihibited the best hydrophilic/hydrophobic balance among dendrons studied in this article ,A-[G-2.5]-C18 dendron has stronger hydrogen bonding interaction at the focal segment and intense van der Waals force at perepheral part, repcetively.
These amphiphilic dendrons were then blended with PLA. Consequently, mono- or multi-layered hexagonal porous structure with good quality could be easily obtained by a breath-figure process. Morphologies of the porous structures would depend on generations of dendrons, hydrophilic/hydrophobic balance and concentrations of amphiphilic dendrons.
During the process of film fabrication, the concentrations of the polymer and surfactant in the solution were gradually increased as the solvent evaporated. Interfacial tension measurements by Du Noüy ring method demonstrated that amphiphilic dendrons would lower the surface free energy between water droplets and poly(D,L-lactide). The theoretical surfactant ability, hydorphilic-lipophilic balance (HLB) was also investigated in the research.
These investigations revealed that the formation of honeycomb films based on the dendrons was subtly controlled by the hydrophilic/lipophilic balance. It is well known that poly (lactic acid) (PLA) is a biodegradable and bioabsorbable material, which can be apply to tissue engineering for cell adhesion and growth. The applications of PLA honeycomb films in biomedical field were also studied.
URI: http://hdl.handle.net/11455/3187
其他識別: U0005-2108201212115400
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.