Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3189
標題: 具有強推-拉共軛基團之星狀分子合成及其光伏特性研究
Synthesis and Photovoltaic Properties of Star Shaped Molecules with Strong Electron-Donor and Electron-Acceptor Groups
作者: 高郁雯
Kao, Yu-Wen
關鍵字: 氰基;2-Ethylhexyl cyanoacetate;硫代巴比妥酸基;噻吩;異質接面有機太陽能電池;有機光伏元件;1,3-dietyl-2-thiobarbituric acid;photovoltaic performance;bulk heterojunction cell
出版社: 化學工程學系所
引用: 莊浩宇, 陳東煌, 科學發展, 第437期, pp58-63, 2009. 林思佑,五環素∕駢苯衍生物有機太陽能電池之研究,碩士論文,國立成功大學 光電科學與工程研究所,台南,民國96年. H. Hoppe, N. S. Sariciftci, J. Mater. Res. 19, 1924, 2004. G Li, R. Zhu, Y. Yong, Nat. Photonics 153, 2012. 張正華, 李陵嵐, 葉楚平, 楊正華, 有機與塑膠太陽能電池, 五南出版社, pp.57, 2007. M.Gratzel, Nature 2001, 414, 338-344. M. O’Regan, M. Gratzel, Nature 353, 737, 1991. M. Gratzel, Inorg. Chem. 44, 6841, 2005. C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett. 384, 372, 2004. W. J. E. Beek, Martijn, M. Wienk, A. J. Janssen, J. Mater. Chem. 15, 2985, 2005. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295, 2425, 2002. K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, and C. A. Grimes, Langmuir 23, 12445, 2007. 霍利軍, 侯劍輝, 中國科學 42, 1, 2009. J. T. Bloking, X. Han, A. T. Higgs, J. P. Kastrop, L. Pandey, J. E. Norton, C. Risko, C. E. Chen, J-L Bredas, M. D. McGehee, A. Sellinger, Chem. Mater. 23, 5484, 2011. M. S. Kim, B. G. Kim, J. Kim, ACS Appl. Mater. Interfaces 1,1264, 2009. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 11, 374, 2001. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 94, 6849, 2003. P. Peumans, S. R. Forrest, Appl. Phys. Lett. 79, 126, 2001. H. Spanggaard, F. C. Krebs, Solar Energy Materials & Solar Cells 83, 125, 2004. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 258, 1474, 1992. C. W. Tang, Appl. Phys. Lett. 48, 183, 1986. G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, Science 270, 1789, 1995. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater, 11, 1, 2001. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater. 13, 85, 2003. G. Li, V. Shortriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704, 2005. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 18, 789, 2006 J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science, 317, 222, 2007 H. Zhou, L. Yang , W. You, Macromolecules 45, 607, 2012. 李在房, 彭強, 和平, 王艷玲, 侯秋飛, 李本林, 田文晶, 有機化學 32, 834, 2012. A. B. Tamayo, B. Walker, and T-Q Nguyen, J. Phys. Chem. C 112, 11545, 2008. Z. Li, J. Pei, Y. Li, B. Xu, M. Deng, Z. Liu, H. Li, H. Lu, Q. Li, W. Tian, J. Phys. Chem. C 114, 18270, 2010. Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 109, 5868, 2009. P. Kovacikn, H. E. Assender, A. A.R. Wattn, Sol. Energy Mater. & Sol. Cells 117, 22, 2013. G. Wei, S. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Adv. Energy Mater. 1, 184, 2011. G. Wei, S. Wang, K. Renshaw, M. E. Thompson, S. R. Forrest , ACS Nano 4, 1927, 2010. C. He, Q. He, Y. He, Y. F. Li, F. Bai, C. Yang, Y. Ding, L. Wang, J. Ye, Sol. Energy Mater. & Sol. Cells, 90, 1815, 2006. G. Wu, G. Zhao, C. He, J. Zhang, Q. He, X. Chen , Y. F. Li, Sol. Energy Mater. & Solar Cells, 93, 108, 2009. C. He,Q. He, Y. Yi, G. Wu, F Bai, Z. Shuai, Y. F. Li, J. Mater. Chem. 18,4085, 2008. W. Li, C. Du, F. Li, Y. Zhou, M. Fahlman, Z .Bo, F Zhang, Chem. Mater. 21, 5327, 2009. A. W. Hains, Z. Liang, M. A. Woodhouse, B. A. Gregg, Chem. Rev. 110, 6689, 2010. H. W. Lin, L. Y. Lin,Y. H. Chen, C. W. Chen,Y. T. Lin, S. W. Chiu, K. T. Wong, Chem. Comm. 47, 7872, 2011. S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, J. Roncali, J. Am. Chem. Soc. 128, 3459, 2006. E. Ripaud, T. Rousseau, P. Leriche, J. Roncali, Adv. Energy Mater. 1, 540, 2011. J. Zhang, D. Deng, C. He, Y. He, M. Zhang, Z. G. Zhang,Z. Zhang, Y. F. Li, Chem. Mater. 23, 817, 2011. Y. Liu,X. Wan, B. Yin, J. Zhou, G. Long, S. Yin, Y. Chen, J. Mater. Chem. 20, 2464, 2010. Y. Liu, J. Zhou, X. Wan, Y. Chen, Tetrahedron, 65, 5209, 2009. C. Duan, W. Cai, F. Huang, J. Zhang, M. Wang, T. Yang, C. Zhong, X. Gong, Y. Cao, Macromolecules. 43, 5268, 2010. D. F. Zeigler, K. S. Chen, H. L. Yip, Y. Zhang, A. K. Y. Jen, Poly. Chem. , 50, 1362, 2012. D. Demeter, T. Rousseau, P. Leriche, T. Cauchy, R. Po, J. Roncali, Adv. Funct. Mater. 21,4379. Z. G. Zhang, H. Fan, J. Min, S. Zhang, J. Zhang, M. Zhang, X. Guo, X. Zhan, Y. Li, Poly. Chem. 2, 1678, 2011. C. Duan, K. S. Chen, F. Huang, H. L. Yip, S. Liu, J. Zhang, A K-Y. Jen, Y. Cao, Chem. Mater. 22, 6444, 2010. F. Huang, K. S. Chen, H. L. Yip, S. K. Hau,O. Acton,Y. Zhang, J. Luo, A. K-Y Jen, J. Am. Chem. Soc. 131, 13886, 2009. C. H. Duan, C. D. Wang, S. J. Liu, F. Huang, C. H. W. Choy ,Y. Cao, Science China Chemistry 54, 685, 2011. Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, J. You, Y. Yang, Y. Chen, Adv. Energy Mater. 1, 771, 2011. Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, Y. Chen, Adv. Mater. 23, 5387 J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li, Y. Chen, Chem. Mater. 23, 4666, 2011. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, Y Chen, J. Am. Chem. Soc. 134, 16345, 2012. Y. Lin, Z. G. Zhang, H. Bai, Y. F. Li, X. Zhan, Chem. Comm. 48, 9655, 2012. Y. Lin, Z. G. Zhang, Y. F. Li, D. Zhu, X. Zhan, J. Phys. Chem. A 1, 5128, 2013. J. Roncali, Acc. Chem. Resea. 42, 1719, 2009. Z. Ning, H. Tian, Chem. Comm., 5483, 2009. Y. M. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C.Bazan, A. J. H eeger, Nat. Mater. 11, 44, 2012. M. M. Wienk, M. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 20, 2556, 2008. G. Li, V. Shrotriya, J. Huang, Y.Yao, K. Emery, Y. Yang, Nat. Mater. , 4, 864, 2005. Y Liu, M Nishiura, Y Wang, Z Hou, J. Am. Chem. Soc. 128, 5592, 2006. S. L. Hsu, C. M. Chen, K. H. Wei, J. Polym. Sci. A: Polym. Chem. 48, 5126, 2010. Y. Zhang, J. Zou, H. L. Yip, K. S. Chen, J. A. Davies, Y. Sun, A. K. Y. Jen, Macromolecules. 44, 4752, 2011. B. Walker, X. Han, C. Kim, A. Sellinger, T. Q. Nguyen, Appl. Mater. Interfaces. 4, 244, 2012. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 14, 1005, 2004. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J.Y. Kim, K. Lee, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 130, 3619-3623, 2008. Y. Zhou, Q. Sun, Z. Tan, H. Zhong, C. Yang, Y. Li, J. Phys. Chem. C 111, 6862, 2007. C. H. Cheon, S. H. Joo, K. Kim, H. W. Shin, and Y. R. Kim. Macromolecules 38, 6336, 2005. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. Hal, R.¬ A. J. Janssen, Angew. Chem., Int. 42, 3371, 2003
摘要: 
本篇論文分子設計上,採用了D-π-A的共軛結構設計,以強推電子基Triphenylamine做為中心体,以Thienylenevinylene為分枝的共軛材料,比較與末端分別再接上氰基 (2-Ethylhexyl Cyanoacetate,CA)和硫代巴比妥酸基 (1,3-Dietyl-2-thiobarbituric acid,DTA )不同拉電子基團,形成TPATT、TPACA與TPADTA三種不同星狀寡聚合物。在經由NMR鑑定確認化學結構、經TGA與DSC分析熱性質熱裂解溫度分別為392 ℃ 、348 ℃與292℃ ;TPATT、TPACA與TPADTA之玻璃轉換溫度為127 ℃ 、130℃及162 ℃。經紫外光-可見光分析光學發現TPATT成膜後,其最大吸收波長在444 nm ,而TPACA成膜後之最大吸收波長在370 nm 與506 nm ,而TPADTA成膜後之最大吸收波長在440nm 與571 nm,表示出具有強拉電子基團的化合物具有較長之吸收波長的現象。經循環伏安法分析TPATT、TPACA與TPADTA之HOMO分別為-5.12 eV 、-5.24eV及-5.6 eV 而LUMO分別為-3.06 eV、-3.19eV及-3.51 eV 。TPATT、TPACA與TPADTA分別依不同比例PC61BM混合製作成薄膜,以AFM觀察表面薄膜型態,發現到TPATT與PC61BM於1:3 (w/w)、TPACA與PC61BM於1:2 (w/w)、TPADTA與PC61BM於1:1 (w/w)之比例混合製作成薄膜,所呈現的奈米級微相分離為最合適的相分離。以TPATT/PC61BM、TPACA/PC61BM與TPADTA/PC61BM複合膜作為光電轉換層,在80 ℃ 下熱處理1小時製作成一系列光伏元件。以TPATT/PC61BM複合膜所製作的元件中,以TPATT摻混PC61BM比例1:3 (w/w) 表現最佳,電流密度Jsc值爲2.73 mA/cm2、開路電壓VOC值爲0.64V、填充因子FF值爲0.37、光電轉換效率PCE值爲0.63 % 。TPACA/PC61BM複合膜所製作的元件,以TPACA摻混PC61BM比例 1:2 (w/w) 表現最佳,電流密度Jsc值爲3.13 mA/cm2 、開路電壓VOC值爲0.57 V 、填充因子FF值爲0.31及光電轉換效率PCE值爲0.55 %。TPADTA/PC61BM複合膜所製作的元件,以TPADTA摻混PC61BM比例 1:1(w/w) 表現最佳,電流密度Jsc值爲3.84 mA/cm2 、開路電壓VOC值爲0.48 V 、填充因子FF值爲0.32及光電轉換效率PCE值爲0.60 %。星狀分子之末端拉電子基對於熱性質、光學性質、電化學性質與光伏特性影響,將在本研究詳細探討。

In this study, the star-shaped molecules (TPATT, TPACA, and TPADTA) with D-π-A conjugated structure based on a triphenylamine core, thienylenevinylene conjugated branches, and electron-withdrawing 2-ethylhexyl cyanoacetate or 1,3-dietyl-2-thiobarbituric acid group were synthesized and used as a donor for bulk heterojunction photovoltaic devices. The maximal absorption wavelengths of TPATT, TPACA, and TPADTA were observed at 444, 506, and 571 nm, respectively. A series of bulk heterojunction solar cells based on the active layer of TPATT/PC61BM, TPACA/PC61BM, and TPADTA/PC61BM blends were fabricated. The power conversion efficiency (PCE) was strongly dependent on the composition of the blends. The PCE values of TPATT/PC61BM based solar cells were larger than those of TPACA/PC61BM and TPADTA/PC61BM based solar cells. A power conversion efficiency of 0.63 %, a short-circuit current density of 2.73 mA/cm2, an open-circuit voltage of 0.64 V, and a fill factor of 0.37 were observed for solar cell based on the active layer of TPATT/PC61BM (1:3, w/w).
URI: http://hdl.handle.net/11455/3189
其他識別: U0005-2607201316230100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.