Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYung-Chuan Liuen_US
dc.contributor.authorChou, Yun-Jungen_US
dc.identifier.citation1. Yu, G.Y., J.B. Sinclair, G.L. Hartman, and B.L. Bertagnolli, Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry, 2002. 34(7): p. 955-963. 2. Wulff, E.G., C.M. Mguni, K. Mansfeld-Giese, J. Fels, M. Lubeck, and J. Hockenhull, Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathology, 2002. 51(5): p. 574-584. 3. Massomo, S.M.S., C.N. Mortensen, R.B. Mabagala, M.A. Newman, and J. Hockenhull, Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of Cabbage in Tanzania with Bacillus strains. Journal of Phytopathology, 2004. 152(2): p. 98-105. 4. Briceno-Montero, G. and S.A. Miller, Evaluation of biological control options for bacterial spot management during tomato transplant production. Acta Horticulturae, 2005. 695: p. 357-365. 5. Ongena, M. and P. Jacques, Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008. 16(3): p. 115-125. 6. Parida, A.K., B. Mittra, A.B. Das, T.K. Das, and P. Mohanty, High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove<i> Bruguiera parviflora</i>. Planta, 2005. 221(1): p. 135-140. 7. Smith, N.R., R.E. Gordon, and F.E. Clark, Aerobic sporeforming bacteria. 1952, Washington, D.C.: Dept. of Agriculture, 1952. 8. Gordon, R.E., W.C. Haynes, and C.H.-N. Pang, The genus Bacillus. 1973, Washington, D.C.: U.S. Dept. of Agriculture 9. Guo-Yun, Y., Biocontrol of Rhizoctonia Solani on Soybean with Bacillius Amyloliquefaciens Producing Iturin A. 1998: University of Illinois at Urbana-Champaign. 10. Kloepper, J.W., C.-M. Ryu, and S. Zhang, Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology, 2004. 94(11): p. 1259-1266. 11. Leonel Ochoa-Solano, J. and J. Olmos-Soto, The functional property of Bacillus for shrimp feeds. Food Microbiology, 2006. 23(6): p. 519-525. 12. 葛俊宏, 利用Bacillus subtilis NPU 001 發酵香菇柄生產抗氧化活性物質. 2009, 台中,台灣: 亞洲大學保健營養生技學系碩士論文. 13. 姜莉莉, 陳彥閔, and 辛明秀, 枯草芽孢桿菌在防治植物病害上的應用與研究發展. 2009. 14. 謝奉加, 植物病害的殺手明星枯草桿菌. Vol. 391期. 2005: 科學發展. p.18-21. 15. 高學文, 姚仕義, H. Pham, J. Vater, and 王金生, 枯草芽孢杆菌B2菌株產生的抑菌活性物質分析. 中國生物防治, 2003. 第19第4期. 16. 劉柏青, 利用枯草桿菌水解台灣鯛魚鱗膠原蛋白. 2008, 台南,台灣: 國立成功大學化學研究所系碩士論文. 17. Rai, S.K. and A.K. Mukherjee, Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochemical Engineering Journal, 2010. 48(2): p. 173-180. 18. Zhang, B., C. Xie, and X. Yang, A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides, 2008. 29(3): p. 350-5. 19. Swain, M.R. and R.C. Ray, Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiological Research, 2009. 164(2): p. 121-130. 20. Claus, D. and R.C.W. Berkeley, Genus Bacillus in Bergeys manual of systematic bacteriology. 1986, Baltimore,U.S.A: Willams and Wikins. 21. Di Franco, C., T. Santini, G. Pisaneschi, and E. Beccari, Insights into the genetic organization of the Bacillus mycoides cryptic plasmids pDx14.2 and pSin9.7 deduced from their complete nucleotide sequence. Plasmid, 2005. 54(3): p. 288-293. 22. Guetsky, R., D. Shtienberg, Y. Elad, and A. Dinoor, Combining Biocontrol Agents to Reduce the Variability of Biological Control. Phytopathology, 2001. 91(7): p. 621-627. 23. Bargabus, R.L., N.K. Zidack, J.E. Sherwood, and B.J. Jacobsen, Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control, 2004. 30(2): p. 342-350. 24. Czaban, J., A. Ksiezniak, B. Wroblewska, and W.L. Paszkowski, An attempt to protect winter wheat against Gaeumannomyces graminis var. tritici by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Polish Journal of Microbiology, 2004. 53(2): p. 101-110. 25. 周建良, 醣脂類生物界面活性劑 rhamnolipid醱酵基質最適化及生產策略之研究. 2005, 台南,台灣: 國立成功大學化學工程學系碩士論文. 26. Ahimou, F., P. Jacques, and M. Deleu, Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 2000. 27(10): p. 749-754. 27. Desai, J.D. and I.M. Banat, Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997. 61(1): p. 47-64. 28. Thimon, L., F. Peypoux, J. Wallach, and G. Michel, Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS MICROBIOLOGY LETTERS, 1995. 128(2): p. 101-6. 29. Deleu, M., M. Paquot, and T. Nylander, Effect of Fengycin, a Lipopeptide Produced by Bacillus subtilis, on Model Biomembranes. Biophysical Journal, 2008. 94(7): p. 2667-2679. 30. 侯紅漫, 靳豔, 金美芳, 虞星炬, and 張衛, 環脂肽類生物表面活性劑結構、功能及生物合成. 微生物學通報, 2006. 33(5): p. 122-128. 31. Souto, G.I., O.S. Correa, M.S. Montecchia, N.L. Kerber, N.L. Pucheu, M. Bachur, and A.F. Garcia, Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal of Applied Microbiology, 2004. 97(6): p. 1247-56. 32. Kim, P.I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y.T. Chi, Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology, 2004. 97(5): p. 942-949. 33. Ongena, M., P. Jacques, Y. Toure, J. Destain, A. Jabrane, and P. Thonart, Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology, 2005. 69(1): p. 29-38. 34. Hue, N., L. Serani, and O. Laprevote, Structural investigation of cyclic peptidolipids from Bacillus subtilis by high-energy tandem mass spectrometry. Rapid Commun Mass Spectrom, 2001. 15(3): p. 203-9. 35. Bonmatin, J.M., Solution three‐dimensional structure of surfactin: A cyclic lipopeptide studied by 1H‐nmr, distance geometry, and molecular dynamics. BIOPOLYMERS, 1994. 34(7): p. 975. 36. Osman, M., Y. Ishigami, K. Ishikawa, I. Y., and H. Holmsen, Dynamic transition of α-helix to β-sheet structure in linear surfactin correlation to critical micelle concentration. Biotechnology Letters, 1994. 16: p. 913-918. 37. 胡志霖, 表面素在土壤復育之應用的探討. 2008: 國立成功大學化學工程學系碩士論文. 38. Heerklotz, H. and J. Seelig, Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophysical Journal, 2001. 81(3): p. 1547-54. 39. Ishigami, Y., M. Osman, H. Nakahara, Y. Sano, R. Ishiguro, and M. Matsumoto, Significance of β-sheet formation for micellization and surface adsorption of surfactin. Colloids and Surfaces B: Biointerfaces, 1995. 4(6): p. 341-348. 40. Razafindralambo, H., Y. Popineau, M. Deleu, C. Hbid, P. Jacques, P. Thonart, and M. Paquot, Foaming properties of lipopep-tides produced by Bacillus subtilis: effect of lipid and peptide structural attributes. 1998. 46: p. 911-916. 41. Razafindralambo, H., P. Thonart, and M. Paquox, Dynamic and equilibrium surface tensions of surfactin aqueous solutions. Journal of Surfactants and Detergents, 2004. 7(1): p. 41-46. 42. Yeh, M.S., Y.H. Wei, and J.S. Chang, Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. BIOTECHNOLOGY PROGRESS, 2005. 21(4): p. 1329-34. 43. Davis, D.A., H.C. Lynch, and J. Varley, The production of Surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme and Microbial Technology, 1999. 25(3–5): p. 322-329. 44. Sen, R., Response Surface Optimization of the Critical Media Components for the Production of Surfactin. Journal of Chemical Technology and Biotechnology, 1997. 68(3): p. 263-270. 45. Wei, Y.-H. and I.M. Chu, Mn2+ improves surfactin production by Bacillus subtilis. Biotechnology Letters, 2002. 24(6): p. 479-482. 46. Wei, Y.-H., C.-C. Lai, and J.-S. Chang, Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry, 2007. 42(1): p. 40-45. 47. Kinsinger, R.F., M.C. Shirk, and R. Fall, Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. JOURNAL OF BACTERIOLOGY, 2003. 185(18): p. 5627-31. 48. Kinsinger, R.F., D.B. Kearns, M. Hale, and R. Fall, Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtilis. JOURNAL OF BACTERIOLOGY, 2005. 187(24): p. 8462-9. 49. Kim, K., S.Y. Jung, D.K. Lee, J.-K. Jung, J.K. Park, D.K. Kim, and C.-H. Lee, Suppression of Inflammatory Responses by Surfactin, a Selective Inhibitor of Platelet Cytosolic Phospholipase A2. Biochemical Pharmacology, 1998. 55(7): p. 975-985. 50. DAE, K.S., J.Y. CHO, H.J. PARK, C.R. LIM, J.H. LIM, H.I. YUN, S.C. PARK, S.K. KIM, and M.H. RHEE, A comparison of the anti-inflammatory activity of surfactin A, B, C, and D from Bacillus subtilis. Vol. 16. 2006, Seoul, COREE, REPUBLIQUE DE: Korean Society for Applied Microbiology. 4. 51. Takahashi, T., O. Ohno, Y. Ikeda, R. Sawa, Y. Homma, M. Igarashi, and K. Umezawa, Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. JOURNAL OF ANTIBIOTICS, 2006. 59(1): p. 35-43. 52. 唐金山, 高昊, 戴毅, 洪葵, and 姚新生, 環脂肽類成分研究進展. Acta Pharmaceutica Sinica, 2008. 43(9): p. 873-883. 53. Kim, S.Y., J.Y. Kim, S.H. Kim, H.J. Bae, H. Yi, S.H. Yoon, B.S. Koo, M. Kwon, J.Y. Cho, C.E. Lee, and S. Hong, Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Letters, 2007. 581(5): p. 865-71. 54. Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater, Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Applied and Environmental Microbiology, 1997. 63(1): p. 44-9. 55. 葉瑩, 微小世界的貢獻-生物農藥. Vol. 443. 2009: 科學發展. 56. 江迪蔚, 枯草桿菌Bacillus subtilis WG6-14於檬果黑斑病防治之應用潛力與作用機制. 2006, 台中,台灣: 國立中興大學植物病理學系碩士論文. 57. 謝奉家, 微生物殺菌劑—枯草桿菌(上). 豐年半月刊, 2008. 58(7): p. 46-50. 58. 林弘裕, 液化澱粉芽孢桿菌胜肽抗生物質之分析與回收純化探討. 2001, 花蓮,台灣: 國立東華大學生物技術研究所碩士論文. 59. Cooper, D.G., C.R. Macdonald, S.J. Duff, and N. Kosaric, Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions. Applied and Environmental Microbiology, 1981. 42(3): p. 408-12. 60. Dhouha, G. and E.C. Semia, Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration. Biotechnology Research International, 2011. 2011. 61. Oka, K., T. Hirano, M. Homma, H. Ishii, K. Murakami, S. Mo- gami, A. Motizuki, H. Morita, K. Takeya, and H. Itokawa, Satisfactory separation and MS-MS spectrometry of six surfactants isolated from Bacillus subtilis natto. Chemical and Pharmaceutical Bulletin, 1993. 41: p. 1000–1002. 62. 杜怡真, 以鹽輔助均相萃取技術結合HPLC-UV快速偵測微生物發酵培養中的表面素. 國立中興大學化學系碩士論文, 2012. 63. Pantazaki, A.A., M.I. Dimopoulou, O.M. Simou, and A.A. Pritsa, Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Applied Microbiology and Biotechnology, 2010. 88(4): p. 939-51.en_US
dc.description.abstract近年來,生物防治已成為農業發展之目標,即是利用自然界所存在的拮抗微生物減緩病害發生速率,並達到病害防治的效果。本研究目的以具有抑制植物病原菌之蕈狀芽孢桿菌Bacillus mycoides NP02液態醱酵生產生物界面活性劑。研究結果於不同組成培養基進行液態醱酵培養,以peptone為培養基之過程中可得較高的生物界面活性劑產量為71.27±1.93 mg/l。 另外針對不同添加物至培養基中對生物界面活性劑產量影響,發現玉米油的添加可使醱酵液的表面張力降低,其中以peptone為培養基並添加玉米油可使醱酵液之表面張力降到33 mN/m,以HPLC分析發現其生物界面活性劑產量高達1744.81±144.89 mg/l,與未添加油脂前之產量相差25倍,證實油脂的添加可增加生物界面活性劑產量。以HPLC分析由Bacillus mycoides NP02所產出的生物界面活性劑,其分析圖譜於14.6 min發現不同於surfactin標準品之成分波峰,但仍具有降低表面張力之活性,此生物界面活性劑可推測極為可能為surfactin isoform,因此需要進一步去鑑定。 以枯草桿菌Bacillus subtilis CWS1生產生物界面活性劑,在不同碳源試驗中,以sucrose為最佳碳源,其生物界面活性劑產量為2283.09±86.85 mg/l;在不同氮源測試中,以(NH4)2SO4為最佳氮源,其生物界面活性劑為2613.16±49.69 mg/l。在培養基最佳化實驗中,選擇碳源、氮源以及玉米油做為設計因子以反應曲面法找出最佳之培養基組成,結果顯示sucrose 50 g/l、(NH4)2SO4 3 g/l以及玉米油 5 g/l於30℃之操作條件進行液態培養,預測可得最佳的生物界面活性劑濃度為8057.57 mg/l。zh_TW
dc.description.abstractIn recent years, microbial pesticides for biocontrol control has become the goal of agricultural development. In this study, the production of biosurfactant by Bacillus mycoides NP02 under peptone-based medium was found to reached 71.27�1.93 mg/l. Various types of additives were added into main culture. It was observed that corn oil could reduce the broth tension to 33 mN/m with peptone-based medium, and its biosurfactant production could reach 1744.81�144.89 mg/l, which was approximately 20-fold to that of the control. This result demonstrates oil addition to medium in submerged culture could enhance the biosurfactant production. The biosurfactant produced by B. mycoides NP02 was analyzed with HPLC, and its retention time of 14.6 min is different from that of the surfactin standard. This unknown biosurfactant in broth is expected to be a surfactin isoform, which need further identification. On the other hand, the optimizing medium enhanced biosurfactant production by Bacillus subtilis CWS1. In carbon source study, sucrose gave the best biosurfactant production, reaching 2283.09�86.85 mg/l. In nitrogen source study, ammonium sulfate was identified to be the most favorable source for biosurfactant production, reaching 2613.16�49.69 mg/l. In the medium optimization, carbon source, nitrogen source and corn oil were chosen as designing factor. According to the response surface methodology, the optimal concentrations of sucrose, ammonium sulfate and corn oil were 50 g/l, 3 g/l and 5 g/l, respectively, where the best biosurfactin production reached 8057.57 mg/l.en_US
dc.description.tableofcontents摘要 I Abstract II 總目錄 IV 表目錄 VIII 圖目錄 IX 第一章、緒論 1 1.1 前言 1 1.2研究動機 2 第二章、文獻回顧 3 2.1 芽孢桿菌(Bacillus spp.) 3 2.1.1簡介 3 2.1.2 芽孢桿菌之發展 3 2.1.3 枯草桿菌 4 2.1.4 蕈狀芽孢桿菌 6 2.2 表面素(surfactin) 6 2.2.1生物界面活性劑 6 2.2.2 抗菌脂質胜肽(lipopeptide) 13 2.2.3表面素之結構性質 13 2.2.4 表面素之研究與應用 14 2.3 微生物製劑 16 第三章、材料與方法 19 3.1 實驗藥品 19 3.2 儀器設備 21 3.3 實驗菌種 23 3.4蕈狀芽孢桿菌(Bacillus mycoide NP02)生產生物界面活性劑之方法 23 3.4.1 前培養 23 3.4.2 主培養 23 3.5枯草桿菌(Bacillus subtilis CWS1)生產生物界面活性劑之方法 24 3.5.1 前培養 24 3.5.2 主培養 24 3.5.3 不同碳源種類之培養 25 3.5.4 不同氮源種類之培養 25 3.6 實驗分析方法 28 3.6.1 實驗分析 28 3.6.2 菌體濃度測試 29 3.6.3殘留糖之濃度測定 29 3.6.4 表面張力測定 30 3.6.5 生物界面活性劑之HPLC分析 30 3.6.6 生物界面活性劑之ESI/MS 分析 30 第四章、結果與討論 32 4.1 蕈狀芽孢桿菌(Bacillus mycoide NP02)生產生物界面活性劑 32 4.1.1 培養基組成之探討 32 4.1.2 添加物效應之探討 36 4.1.3 改變氮源濃度/油脂混合效應 39 4.1.4 不同種類油脂添加之效應 42 4.1.5 生物界面活性劑結構鑑定 45 4.2 枯草桿菌(Bacillus subtilis CWS1)生產生物界面活性劑 48 4.2.1 碳源種類之影響 48 4.2.2 氮源種類之影響 50 4.2.3 培養基之最佳化探討 52 第五章、結論與未來展望 55 5.1 結論 55 5.2 未來展望 57 參考文獻 58zh_TW
dc.subjectBacillus mycoidesen_US
dc.subjectBacillus subtilisen_US
dc.subjectoil additionen_US
dc.subjectresponse surface methodologyen_US
dc.titleProduction of biosurfactant by Bacillus mycoides NP02 and Bacillus subtilis CWS1 in submerged cultureen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.