Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3194
標題: 利用離子液體薄膜分離二氧化碳及其滲透係數之定量研究
The Separation of CO2 with Ionic Liquid Membrane and Its Permeability Quantification
作者: 張祐漢
Chang, You-Han
關鍵字: 氣體分離;Gas permeation;離子液體;數值模型;滲透係數;Permeability;Ionic liquid;Mathematical model
出版社: 化學工程學系所
引用: [1] 胡蒨傑,魏大欽,“21 世紀的新森林-氣體分離薄膜”科學發展,(2008);429:32-37 [2]S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, M. Wessling, Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. Journal of Membrane Science 352 (2010) 126-135. [3] T. Matsuura, “ Synthetic Membranes and Membrane Separation Processes “, CRC Press, Inc., Canada, (1994) [4] C. Staudt-Bickel, W. J. Koros, Improvement of CO2/CH4 separation Characteristics of polyimides by chemical crosslinking. Journal of Membrane Science 155 (1999) 145-154. [5] R. W. Baker, “Membrane Technology and Applications “, McGraw-Hill, Menlo Park, California,(2000). [6]翁子翔,高分子薄膜與多層複合薄膜氣體氣體分離特性之研究,中興大學環境工程研究所,博士學位論文,(2010)。 [7] A.F. Ismail, L.I.B. David,” A review on the latest development of carbon membranes for gas separation”, J. Membrane Sci. 193 (2001) 1-18. [8]A. Loeb and S.Sourrirajan, “Sea Water Demineralization by Means of an Osmotic Membrane”,Adv.Chem.Ser., 38, 117, (1962) [9] Prasad, R., R. L. Shaner, and K. J. Doshi, In Polymeric Gas Separation Membrane, CRC Press, Boca Raton, FL, (1994) [10]羅偉碩,氣體在羧酸化聚苯乙烯薄膜中傳送特性之研究,朝陽科技大學應用化學系,碩士學位論文,(2003) [11] Y. Huang, D.R. Paul, “Physical aging of thin glassy polymer films monitored by gas permeability” Polymer, 45, 8377, (2004). [12] 蕭盛文,PMMA氣體分離膜的物理老化行為之探討,中原大學化學工程學系,碩士學位論文,(2006) [13] F.F. Krull, C. Fritzmann, T. Melin, “Liquid membranes for gas/vapor separation”, J. Membr. Sci. 325 (2) (2008) 509–519. [14] J.E. Bara, S. Lessmann, C.J. Gabriel, E.S. Hatakeyama, R.D. Noble, D.L. Gin,” Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes”, Ind. Eng. Chem. Res. 46 (16) (2007) 5397–5404. [15] B.A. Voss, J.E. Bara, D.L. Gin, R.D. Noble,” Physically gelled ionic liquid: Solid membrane materials with liquidlike CO(2) gas transport”, Chem. Mater. 21 (2009) 3027–3029. [16] L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62 (1991) 165-185. [17] L. M. Robeson, The upper bound revisited. Journal of Membrane Science 320 (2008) 390-400. [18] P. Uchytil, J. Schauer, R. Petrychkovych, K. Setnickova, S.Y. Suen,”Ionic liquid membranes for carbon dioxide–methane separation” J. Membrane Sci. 383 (2011) 262-271. [19] C. A. Scholes, S. E. Kentish, G. W. Stevens, Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications, Recent Patents on Chemical Engineering 1 (2008) 52-66. [20]R. W. Baker, E. L. Cussler, W. Jkoros, R. L. Riley and H. Strathmann, “Membrane Separarion System-Recent Developments and Future Directions”, Noyes Data Corp., Park Ridge, NJ., 189-238(1991) [21] L. M. Robeson, A. Noshay, M. Matzner, C. N. Merriam, “Physical Property Characteristics of Polysulfone/Polydimethylsiloxane Block Copolymers”, Angew. Makromol. Chem, 29, 47, (1973) [22] Pandey P., Chauhan RS,“Membranes for gas separation,” Prog. Polym. Sci., 26(6), 853-93, (2001) [23] A.F. Ismail, W. Lorna,” Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane”, Separation and Purification Technology 27 (2002) 173–194. [24] Ahmad Fauzi Ismail, Tutuk Djoko Kusworo, Azeman Mustafa, Hasrinah Hasbullah,” Understanding the Solution-Diffusion Mechanism in Gas Separation Membrane for Engineering Students “,(2005) [25]J. M. Smith, H. C. Van Ness, M. M. Abbott, “Introduction to Chemical Engineering Thermodynamics,7e“, McGraw-Hill, (2004). [26] J.G. Wijmans, R.W. Baker, ”The solution-diffusion model: a review”, J. Membrane Sci. 107 (1995) 1-21. [27] W.P. Wang , H.T. Lin , C.D. Ho, “An analytical study of laminar co-current flow gas absorption through a parallel-plate gas–liquid membrane contactor”, J. Membrane Sci. 278 (2006) 181-189. [28] L.M. Robeson, ”Polymer membranes for gas separation”, Current Opinion in Solid State and Materials Science 4 (1999) 549–552. [29] P. Uchytil, R. Petrickovic, A. Seidel-Morgenstern,” Transport of butane in a porous Vycor glass membrane in the region of condensation pressure”, J. Membrane Sci. 293 (2007) 15-21. [30] 梁家毓,以聚醚碸/蒙脫土複合薄膜為三明治結構離子液體薄膜之支撐層應用於氣體輸送,國立中興大學化學工程學系碩士學位論文, (2011) [31] 羅梓宏,醋酸纖維素/二氧化鈦奈米顆粒混合基材薄膜應用於二氧化碳和甲烷的分離,國立中興大學化學工程學系碩士學位論文, (2012) [32] S.W.Rutherford, D.D.DO, “Review of time lag permeation technique as a method for characterisation of porous media and membranes” Adsorption 1997;3:283-312. [33] Richard W. Baker,“Future Directions of Membrane Gas Separation Technology”, Ind. Eng. Chem. Res. 2002, 41, 1393-1411. [34] Redlich, Otto, Kwong, J. N. S., "On The Thermodynamics of Solutions", Chem. Rev. 44(1) (1949) 233–244. [35] Peng, Ding-Yu, Robinson, Donald, “A New Two-Constant Equation of State”, Industrial & Engineering Chemistry Fundamentals 15(1) (1985) 59–64.
摘要: 
本研究主要根據實驗結果的數據與理論比較,建立五種簡易的數值模型,尋找氣體經由薄膜滲透的輸送機制以解釋此質傳現象,其中數值模型包括所有可能有關的物理/化學因子寫入成為參數,而量化出二氧化碳及甲烷氣體分子在薄膜中的滲透係數。由三種不同離子液體以聚醚碸/蒙脫土複合薄膜為三明治結構之支撐層,離子液體分別為1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([Hmim][Tf2N]) 、1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])、1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([Emim][Tf2N]),由取得二氧化碳及甲烷經三種離子液體薄膜滲透的實驗數據進行擬合,並比較不同的數值模型擬合結果,數值模型成功的計算出離子液體薄膜的氣體滲透係數,三種離子液體的二氧化碳滲透係數約為3.12-4.36 barrer,而甲烷之滲透係數約為0.085-0.17 barrer,此結果與梁家毓, 2011所計算的結果比較並且討論。比較結果顯示量化的結果都落於具有高的選擇率但滲透係數較低的區域,而本模型提供了具有理論基礎且較便利的方法確定量化出滲透係數。

In this research, five simple permeation models were developed, attempting to describe the separation of carbon dioxide in mathematical point of view. Furthermore, the quantification of the physicochemical factors in the mechanism is feasible. Three kinds ionic liquid membrane, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([Hmim][Tf2N])、1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])、1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([Emim][Tf2N]), using polyethersulfone (PES)/montmorillonite (MMT) composite membranes as a support in sandwich form for CO2 and CH4 separation. The analytical model was employed to determine the gas permeation coefficient by curve-fitting experiment data with the results from the models proposed in this work. The permeability of carbon dioxide of three ionic liquid were about 3.12-4.36 barrer, and the permeability of methane were about 0.085-0.17 barrer. Both are validated with previously reported data (Liang, 2011) and discussed.The results consistently show high selectivity and low permeability. This model successfully provides a convenient method for permeability
quantification.
URI: http://hdl.handle.net/11455/3194
其他識別: U0005-1308201311015900
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.