Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3197
DC FieldValueLanguage
dc.contributor鄭紀民zh_TW
dc.contributor.author吳仕揚zh_TW
dc.contributor.authorWu, Shih-Yangen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:31:24Z-
dc.date.available2014-06-06T05:31:24Z-
dc.identifierU0005-2901201314430900en_US
dc.identifier.citation參考文獻 1. 鄭耀宗、徐耀昇,燃料電池技術進展的現況分析,八十八年節約能源論文發表會論文專輯,第409-422 頁,1999. 2. Fuel Cell Handbook(Seventh Edition),November 2004. 3. 司洪濤、李春正,節約能源與污染預防之燃料電池技術介紹,環境工程會刊,第17頁-27頁,2011. 4. A.Hamnett,“Mechanism and electrocatalysis in the direct methanol fuel cell.”Catalysis Today, 38 ,445-457,1997. 5. T. Frelink, W. Visscher, J.A.R. van Veen,“On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt.” Surface Science, 335,353-360,1995. 6. 蔡孟哲,密度泛函理論對PtxRu55-X團簇上一氧化碳氧化反應之研究,國立台灣科技大學化學工程系碩士論文,2008. 7. Sheng Zhang, Yuyan Shao, Geping Yin, Yuehe Lin,“Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation.”Journal of Power Sources,195,1103-1106,2010. 8. Guoxiu Wang, Huimin Wu, David Wexler, Huakun Liu, Oumarou Savadogo,“Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction.” Journal of Alloys and Compounds,503,L1-L4,2010. 9. Marc T. M. Koper, Tatyana E. Shubina, and Rutger A. van Santen,“Periodic Density Functional Study of CO and OH Adsorption on Pt-Ru Alloy Surfaces:Implications for CO Tolerant Fuel Cell Catalysts. ”Journal of Physical Chemistry,106,686-692,2002. 10. Umit B. Demirci,“Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells.” Journal of Power Sources,173, 11-18,2007. 11. Jianhuang Zeng, Jim Yang Lee,“Effects of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions. ”Journal of power Sources,140,268- 273,2005. 12. S. Wasmus, A. KuEver,“Methanol oxidation and direct methanol fuel cells: a selective review1.” Journal of Electroanalytical Chemistry,461,14-31,1999. 13. Flavio Colmati, Ermete Antolini, Ernesto R. Gonzalez,“Pt–Sn/C electrocatalysts for methanol oxidation synthesizedby reduction with formic acid.” Electrochimica Acta, 50, 5496-5503,2005. 14. Jong-Ho Choi, Kyung-Won Park, In-Su Park, Woo-Hyun Nam, Yung-Eun Sung,“Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts.”Electrochimica Acta,50,787-790,2004. 15. Chien-Te Hsieh, Wei-Min Hung, Wei-Yu Chen, Jia-Yi Lin,“Microwave-assisted polyol synthesis of PteZn electrocatalysts on carbon nanotube electrodes for methanol xidation.”International Journal of Hydrogen Energy,36, 2765-2772, 2011. 16. Hong Zhu,Zhijun Gou,Xinwei Zhang,Kefei Han,Yu bao Guo,Fanghui Wang,Zhongming Wang,Yongsheng Wei“Methanol-tolerant carbon aerogel-supported PteAu catalysts for direct methanol fuel cell.” International Journal of Hydrogen Energy,37,873-876,2012. 17. Fei Ye, Shengzhou Chen, Xinfa Dong, Weiming Lin,“Carbon Nanotubes Supported Pt-Ru-Ni as Methanol Electro-Oxidation Catalyst for Direct Methanol Fuel Cells.” Journal of Natural Gas Chemistry., 16,162-166,2007. 18. Yuzhen Zhang, Yong-e Gu, Shaoxiong Lin, Jinping Wei, Zaihua Wang, Chunming Wang,“One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity.” Electrochimica Acta,56,8746-8751,2011. 19. Vladimir Neburchilov, Haijiang Wang, Jiujun Zhang,“Low Pt content Pt–Ru–Ir–Sn quaternary catalysts for anodic methanol oxidation in DMFC.” Electrochemistry Communications,9,1788-1792,2007. 20. Kuo-Shan Yao,Ya-Chi Chen,Ching-Hsun Chao,Wei-Fan Wang,Shui-Yang Lien,Han Chang Shih,Tien-Lai Chen,Ko-Wei Wang,“Electrical enhancement of DMFC by Pt–M/C catalyst-assisted PVD.” Thin Solid Films,518,7225-7228,2010. 21. Jianbo Xu, Kaifeng Hua, Gengzhi Sun, Cheng Wang, Xiangyu Lv, Yujiang Wang,“Electrooxidation of methanol on carbon nanotubes supported Pt–Fe alloy electrode.”Electrochemistry Communications,8,982-986,2006. 22. M. Watanabe,Makoto Uchida,Satoshi Motoo,“Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol.” Journal of Electroanalytical Chemistry, 229, 395-406,1987. 23. Min-Soo Hyun,Sang-Kyung Kim,Byungrock Lee,Donghyun Peck,Yonggun Shul,Doohwan Jung,“Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method.”Catalysis Today,132,138-145,2008. 24. Seol-Ah Lee,Kyung –Won Park,Jong-Ho Choi,Boo-Kil Kwon,and Yung-Eun Sung,“Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells.” Journal of The Electrochemical Society,149(10), A1299-A1304,2002. 25. L. Xiong, A. Manthiram.“Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells.”Solid State Ionics,176, 385-392,2005. 26. Chieng-Ming Chen, Mi Chen, Hung-Wei Yu, Su-Chen Lu, and Chia-Fu Chen,“Rapid and Homogeneous Dispersion of Pt Catalyst Particles on Multi-Walled Carbon Nanotubes by Temperature- Controlled Microwave Polyol Method.” Japanese Journal of Applied Physics,47,4,2324-2329,2008. 27. Minoru Umeda, Mitsuhiro Kokubo, Mohamed Mohamedi, Isamu Uchida,“Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation.”Electrochimica Acta,48,1367-1374,2003. 28. Mohsen Khosravi, Mohammad K. Amini.“Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions. ”International Journal of Hydrogen Energy,35,10527- 10538,2010. 29. Chunwei Yang,Xinguo Hu,Dianlong Wang,Changsong Dai,Liang Zhang,Haibo Jin,Simeon Agathopoulos,“Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation.”Journal of Power Sources,160,187-193,2006. 30. Baomin Luo, Shan Xu, Xingbin Yan, Qunji Xue,“Graphene nanosheets supported hollow Pt&CoSn(OH)6 nanospheres as a catalyst for methanol electro-oxidation.” Journal of Power Sources,205,239-243,2012. 31. A.K.Geim and K.S.Novoselov, “The rise of grapheme.”Nature materials,vol. 6,183-191,2007. 32. Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen,and Rodney S. Ruoff,“Graphene-based composite materials.”Nature Letters,vol 442,282-286,2006. 33. Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie, Y. Ron Shen, “Gate-Variable Optical Transitions in Graphene.”Science,Vol 320,206-209,2008. 34. By Haixin Chang,Guangfeng Wang,An Yang,Xiaoming Tao,Xuqing Liu,Youde Shen,and Zijian Zheng,“A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode.”Advanced functional materials,20,2893-2902,2010. 35. 朱永恩,分析石墨烯之電子場發射特性及其應用於掃描穿隧式電子顯微鏡,大同大學光電工程研究所碩士論文,2011. 36. Sukosin Thongrattanasiri, Frank H. L. Koppens, F. Javier Garcia de Abajo,“Total light absorption in grapheme.” Physical Review Letters 108, 047401 (2012). 37. Weiwei Cai, Arden L. Moore, Yanwu Zhu, Xuesong Li, Shanshan Chen, Li Shi,and Rodney S. Ruoff,“Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition,”Nano Letters,10,1645-1651,2010. 38. Ching-Yuan Su, Dongliang Fu, Ang-Yu Lu, Keng-Ku Liu, Yanping Xu, Zhen-Yu Juang and Lain-Jong Li,“Transfer printing of graphene strip from the graphene grown on copper wires.”Nanotechnology 22,185309,2011. 39. 張忠凱,二氧化碳雷射還原與圖案化氧化石墨烯導電薄膜並應用於薄膜式場效電晶體,國立中正大學機械工程研究所碩士論文,2010. 40. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov,“Electric Field Effect in Atomically Thin Carbon Films.”Science 22.,Vol.306,no.5696,666-669,2004. 41. Hyosub An, Won-Jun Lee, Jongwan Jung,“Graphene synthesis on Fe foil using thermal CVD.”Current Applied Physics.,11,s81-s85,2011. 42. J Hass, W A de Heer and E H Conrad,“The growth and morphology of epitaxial multilayer grapheme.”Journal of Physics,Condensed Matter 20,323202,2008. 43. W. Hummers and R. Offeman,“ Preparation of graphitic oxide.”Journal of the American Chemical Society,80(6) , 1339-1339,1958. 44. Jianfeng Shen,Bo Yan,Min Shi,Hongwei Ma,Na Li,Mingxin Ye,“Fast and facile preparation of reduced grapheme oxide supported Pt–Co electrocatalyst for methanol oxidation.” Materials Research Bulletin,47,1486-1493,2012. 45. Surbhi Sharma, Abhijit Ganguly, Pagona Papakonstantinou, Xiaopei Miao, Meixian Li, John L. Hutchison, Michael Delichatsios, and Sebastian Ukleja,“Rapid Microwave Synthesis of CO Tolerant Reduced Graphene Oxide-Supported Platinum Electrocatalysts for Oxidation of Methanol.”Journal of Physical Chemistry,114, 19459–19466,2010. 46. Guoxiu Wang, Juan Yang, Jinsoo Park, Xinglong Gou, Bei Wang, Hao Liu, and Jane Yao,“Facile Synthesis and Characterization of Graphene Nanosheets.” Journal of Physical Chemistry C,112, 8192–8195,2008. 47. Fei Han, Xiaomin Wang, Jie Lian, Yongzhen Wang,“The effect of Sn content on the electrocatalytic properties of Pt–Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction.”Carbon,50,5498-5504,2012. 48. Seok Hee Lee, Nitul Kakati, Seung Hyun Jee, Jatindranath Maiti, Young-Soo Yoon,“Hydrothermal synthesis of PtRu nanoparticles supported on graphene sheets for methanol oxidation in direct methanol fuel cell.”Materials Letters,65,3281-3284,2011. 49. Yueming Li, Longhua Tang, Jinghong Li,“Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites.” Electrochemistry Communications,11,846-849,2009. 50. Hui Zhang, Xiaoqing Xu, Piao Gu, Chunyun Li, Ping Wu, Chenxin Cai,“Microwave-assisted synthesis of graphene-supported Pd1Pt3 nanostructures and their electrocatalytic activity for methanol oxidation.” Electrochimica Acta,56,7064-7070,2011. 51. Baomin Luo, Shan Xu, Xingbin Yan, Qunji Xue,“Graphene nanosheets supported hollow Pt&CoSn(OH)6 nanospheres as a catalyst for methanol electro-oxidation.”Journal of Power Sources,205,239-243,2012. 52. Peter T. Kissinger,“Cyclic voltammetry.”Journal of Chemical Education,Vol. 60,702-706,1983. 53. Tri D. Tran and Stanley H. Langer,“Electrochemical Measurement of Platinum Surface Areas on Particulate Conductive Supports.”Analytical Chemistry,65,1805-1807,1993. 54. 柯以侃,吳明珠,儀器分析(熱分析法),文京圖書有限公司,1999. 55. 許樹恩、吳泰伯,X光繞射原理與材料結構分析 ,中國材料科學學會,1993. 56. 陳力俊等,材料電子顯微鏡學,科儀叢書,1994. 57. 陳家全,李家維,楊瑞森,生物電子顯微鏡學,貴儀中心,1991. 58. R. Bertoncello, A. Casagrande, M. Casarin, A. Glisenti, E. Lanzoni, L. Mirenghi, and E. Tondello,“TiN, Tic and Ti(C, N) Film Characterization and its Relationship to Tribological Behaviour.”Surface and interface analysis,Vol.18,525-531,1992. 59. Dongxing Yang,Aruna Aruna Velamakanni, Gu‥ lay Bozoklu, Sungjin Park, Meryl Stoller, Richard D. Piner, Sasha Stankovich, Inhwa Jung, Daniel A. Field, Carl A. Ventrice Jr , Rodney S. Ruoff,“Chemical analysis of graphene oxide films after heat and Chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy.”Carbon,47,154-152,2009. 60. S. Hufner, G.K. Wertheim, J.H. Wernick,“XPS core line asymmetries in metals. ”Solid State Communications, Vol. 17, Issue4, 417-422, 1975. 61. N. S. McIntyre , M. G. Cook.“X-Ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper.”Analatical Chemistry, Vol. 47, Issue13, 2208-2213, 1975. 62. A. M. Saib,A. Borgna, J. van de Loosdrecht, P. J. van Berge,and J. W. Niemantsverdriet, “In Situ Surface Oxidation Study of a Planar Co/SiO2/Si(100) Model Catalyst with Nanosized Cobalt Crystallites under Model Fischer-Tropsch Synthesis Conditions. ” Journal of Physical Chemistry,Vol. 110,Issue 17,8657-8664,2006. 63. Tery L. Barr,“An ESCA Study of Termination of the Passivation of Elemental Metals.” Journal of Physical Chemistry, Vol. 82, Issue 16, 1801-1810, 1978. 64. Chien-Te Hsieh, Jia-Yi Lin.,“Fabrication of bimetallic Pt–M (M = Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells.”Journal of Power Sources.,188,347-352,2009.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3197-
dc.description.abstract本研究主要是採用化學還原法中的多元醇還原法,並利用石墨烯做為雙金屬觸媒的載體,其中製備石墨烯的方法是採用Hummers method先製備出氧化石墨烯,再將氧化石墨稀與鉑、鈷雙金屬前驅物溶於乙二醇中,以PVP做為金屬保護劑,在180℃下進行3小時的還原反應,以製備出鉑、鈷雙金屬觸媒擔持在石墨烯表面。先以10 wt%鉑、鈷雙金屬觸媒且莫耳比為1:1擔持於石墨烯表面上,並探討PVP與金屬重量比R值的影響,經由電化學分析過後的結果發現在R=0.9且鉑、鈷雙金屬莫耳比為1:1具有最好的抗毒化效果。同時在R=0.9下,探討了擔持量(5wt%~20wt%)和鉑、鈷雙金屬莫耳比的影響。最後透過TEM、XRD、TGA、EDS、XPS和電化學分析來探討雙金屬觸媒擔持在石墨烯表面的分散性、晶相結構、金屬含量、甲醇氧化電流密度與抗毒化程度。 經由XRD的檢測後,發現擔持在石墨烯上的鉑、鈷雙金屬觸媒型態並非雙合金結構,由TGA和EDS分析結果發現擔持於石墨烯表面的鉑、鈷雙金屬量和原子比會因雙金屬競爭效應的關係而有所不同,最後根據循環伏安分析法判斷甲醇的催化活性與雙金屬觸媒的抗毒化程度。由結果可以發現在R=0.9,雙金屬莫耳比為1:1且總重量達15wt%擔持於石墨烯表面上的鉑、鈷雙金屬觸媒擁有最高的甲醇氧化波峰電流密度46mA/cm2,和較佳的抗毒化程度(If/Ib=1.89)。zh_TW
dc.description.abstractThis study has used Polyol reduction method to prepare highly-dispersed bi-metallic supported on Grnphene catalysts. The Graphene oxide was first prepared by using Hummers method, then the synthsized Graphene oxide and bi-metallic precursors were placed into ethylene glycol solution, and added PVP as the metallic protecting agent. The solution was heated to 180℃ for 3 hours to form Pt-Co bi-metallic catalysts supported on Graphene surface. The 10 wt% Pt-Co bi-metallic catalyst and the molar ratio of 1:1 supported on grapheme has been investigated to determine the effect of R, which is the ratio of PVP weight to total weight of bi-metallic in the catalyst, on the chemical properties of these catalysts. Discussed the effect of supporting amount (5wt% ~ 20wt%) and the Pt-Co molar ratio with R=0.9. The electrochemical analysis results have revealed that with R=0.9 and the molar ratio of 1:1 of Pt to Co has the best antitoxic capbility. Finally, through TEM, XRD, TGA, EDS, XPS, and electrochemical analysis to further determine the dispersibility、crystalline phase structure、metal content、methanol oxidation current density and antitoxic degree on the bi-metallic supported on Graphene catalysts. The XRD detection results have found that Pt-Co bi-metallic catalyst supported on Graphene does not form metal alloy, and through the detection of TGA and EDS has indicated that the competitive effect of the bi-metallic results in the difference of weight and molar ratio of the Pt-Co bi-metallic supported on Graphene surface. Finally, the analysis of the cyclic voltammetry method has determined the catalytic activity of methanol and antitoxic degree of these catalysts. The results have found that the Pt-Co bi-metallic with R=0.9 and the atomic ratio 1:1 and total weight of Pt-Co at 15 wt% on Graphene surface possesses the highest peak current density of methanol oxidation of 46 mA/cm2, and antitoxic degree of If / Ib = 1.89, respectively.en_US
dc.description.tableofcontents中文摘要------------------------------------------------------------------------------------ i 英文摘要------------------------------------------------------------------------------------ ii 致謝------------------------------------------------------------------------------------------ iii 目錄------------------------------------------------------------------------------------------ iv 圖目錄--------------------------------------------------------------------------------------- vii 表目錄--------------------------------------------------------------------------------------- ix 第一章 緒論------------------------------------------------------------------------------- 1 1-1前言------------------------------------------------------------------------------------- 1 1-2研究動機與目的---------------------------------------------------------------------- 1 第二章 文獻回顧------------------------------------------------------------------------- 4 2-1燃料電池的介紹---------------------------------------------------------------------- 4 2-1-1燃料電池的種類-------------------------------------------------------------------- 4 2-1-2直接甲醇燃料電池的簡介-------------------------------------------------------- 6 2-2直接甲醇燃料電池的介紹---------------------------------------------------------- 6 2-2-1直接甲醇燃料電池的構造-------------------------------------------------------- 6 2-2-2直接甲醇燃料電池工作原理----------------------------------------------------- 8 2-2-3直接甲醇燃料電池陽極反應機制----------------------------------------------- 8 2-2-4雙金屬形態介紹-------------------------------------------------------------------- 10 2-2-5雙金屬文獻探討-------------------------------------------------------------------- 11 2-3陽極觸媒製備方法------------------------------------------------------------------- 16 2-4石墨烯簡介---------------------------------------------------------------------------- 19 2-4-1石墨烯製備方法-------------------------------------------------------------------- 20 2-4-2 石墨烯應用於直接甲醇燃料電池的文獻探討------------------------------- 21 2-5 循環伏安法介紹--------------------------------------------------------------------- 24 2-5-1 甲醇電解質溶液循環伏安法介紹---------------------------------------------- 25 2-5-2 循環伏安法用於電化學表面積的計算---------------------------------------- 27 第三章 實驗設備與研究方法---------------------------------------------------------- 30 3-1實驗藥品------------------------------------------------------------------------------- 30 3-2實驗儀器------------------------------------------------------------------------------- 31 3-3實驗方法------------------------------------------------------------------------------- 32 3-3-1氧化石墨烯製備方法-------------------------------------------------------------- 32 3-3-2鉑鈷雙金屬粒子的合成----------------------------------------------------------- 33 3-4分析儀器簡介------------------------------------------------------------------------- 34 3-4-1熱重損失分析儀-------------------------------------------------------------------- 34 3-4-2廣角X-ray分析儀------------------------------------------------------------------ 35 3-4-3穿透式電子顯微鏡----------------------------------------------------------------- 37 3-4-4場發射掃描式電子顯微鏡-------------------------------------------------------- 38 3-4-5 X-射線光電子光譜---------------------------------------------------------------- 38 3-4-6電化學測試系統-------------------------------------------------------------------- 39 第四章 實驗結果與討論---------------------------------------------------------------- 40 4-1鉑鈷雙金屬觸媒的合成------------------------------------------------------------- 40 4-1-1不同R值,10wt% PtCo/Graphene TEM圖分析------------------------------- 41 4-1-2不同R值,10wt% PtCo/Graphene X-ray繞射分析---------------------------- 46 4-1-3不同R值,10wt% PtCo/Graphene TGA圖分析------------------------------- 48 4-1-4不同R值,10wt% PtCo/Graphene EDS分析----------------------------------- 50 4-1-5不同R值,10wt% PtCo/Graphene電化學活性面積-------------------------- 51 4-1-6不同R值,10wt% PtCo/Graphene循環伏安法電化學測試----------------- 54 4-2 不同重量百分比,PtCo/Graphene的合成---------------------------------------- 56 4-2-1不同重量百分比,PtCo/Graphene的TEM圖分析---------------------------- 56 4-2-2不同重量百分比,PtCo/Graphene X-ray繞射分析---------------------------- 60 4-2-3不同重量百分比,PtCo/Graphene TGA分析---------------------------------- 61 4-2-4不同重量百分比,PtCo/Graphene EDS分析----------------------------------- 63 4-2-5不同重量百分比,PtCo/Graphene電化學活性面積-------------------------- 64 4-2-6不同重量百分比,PtCo/Graphene循環伏安法電化學測試----------------- 66 4-3 不同莫耳比,10wt%鉑鈷雙金屬觸媒合成-------------------------------------- 68 4-3-1不同莫耳比,10wt%鉑鈷雙金屬觸媒TEM分析------------------------------ 68 4-3-2不同莫耳比,10wt%鉑鈷雙金屬觸媒X-ray繞射分析----------------------- 73 4-3-3不同莫耳比,10wt%鉑鈷雙金屬觸媒TGA分析------------------------------ 74 4-3-4不同莫耳比,10wt%鉑鈷雙金屬觸媒EDS分析------------------------------ 76 4-3-5不同莫耳比,10wt%鉑鈷雙金屬觸媒電化學活性面積---------------------- 77 4-3-6不同莫耳比,10wt%鉑鈷雙金屬觸媒循環伏安法電化學測試------------- 79 4-4 不同莫耳比,15wt%鉑鈷雙金屬觸媒合成-------------------------------------- 81 4-4-1不同莫耳比,15wt%鉑鈷雙金屬觸媒TEM分析------------------------------ 81 4-4-2不同莫耳比,15wt%鉑鈷雙金屬觸媒X-ray繞射分析----------------------- 85 4-4-3不同莫耳比,15wt%鉑鈷雙金屬觸媒TGA分析------------------------------ 86 4-4-4不同莫耳比,15wt%鉑鈷雙金屬觸媒EDS分析------------------------------ 88 4-4-5不同莫耳比,15wt%鉑鈷雙金屬觸媒XPS分析------------------------------ 89 4-4-6不同莫耳比,15wt%鉑鈷雙金屬觸媒電化學活性面積---------------------- 93 4-4-7不同莫耳比,15wt%鉑鈷雙金屬觸媒循環伏安法電化學測試------------- 95 第五章 結論------------------------------------------------------------------------------- 98 參考文獻------------------------------------------------------------------------------------ 99 附錄------------------------------------------------------------------------------------------ 107zh_TW
dc.language.isozh_TWen_US
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2901201314430900en_US
dc.subject石墨烯zh_TW
dc.subjectGrapheneen_US
dc.subject多元醇還原法zh_TW
dc.subject直接甲醇燃料電池zh_TW
dc.subjectPolyol methoden_US
dc.subjectDMFCen_US
dc.title合成高分散鉑鈷奈米粒子擔持在石墨烯於直接甲醇燃料電池之應用zh_TW
dc.titleSynthesis of Highly Dispersed Pt-Co Nanoparticles on Graphene Sheets for Methanol Oxidation Fuel Cell Applicationen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.