Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3198
標題: 含吡咯併吡咯二酮衍生物之星狀寡聚合體合成及其光伏特性研究
Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole Derivatives Based Star Shaped Conjugated Oligomers
作者: 蕭聖議
Shiau, Sheng-Yi
關鍵字: 吡咯併吡咯二酮;diketopyrrolopyrrole;三苯胺;咔唑;異質介面有機太陽能電池;有機光伏元件;photovoltaic performance;bulk heterojunction cell
出版社: 化學工程學系所
引用: 1 莊浩宇、陳東煌,科學發展437 期,pp.58-63,2009。 2 林思佑,五環素∕駢苯衍生物有機太陽能電池之研究,碩士論文,國立成功大學 光電科學與工程研究所,台南,民國96 年。 3 H. Zhou,L. Yang, W. You, Macromolecules, 45, 607, 2012 4 L.Y. Lin, Y. H. Chen, Z.Y. Huang, H.W. Lin,,S.H. Chou, F. Lin, C. W. Chen, Y. H. Liu, K.T. Wong, J. Am. Chem. Soc. 133,15822, 2011 5 M. O’Regan, M. Gratzel, Nature 353, 737, 1991. 6 M. Gratzel, Inorg. Chem. 44, 6841, 2005. 7 W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295, 2425, 2002. 8 C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett. 384, 372, 2004 9 W. J. E. Beek, Martijn, M. Wienk, A. J. Janssen, J. Mater. Chem. 15, 2985, 2005. 10 K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, and C. A. Grimes, Langmuir 23, 12445, 2007. 11 G. Yu, C. Zhang, A. J. Heeger, Appl. Phys. Lett. 64, 1540, 1993. 12 H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Angew. Chem. 50, 2995, 2011. 13 J. T. Bloking, X. Han, A. T. Higgs, J. P. Kastrop, L. Pandey, J. E. Norton, C. Risko, C. E. Chen, J. L. Bredas, M. D. McGehee, A. Sellinger, Chem. Mater. 24, 5484, 2011. 14 L. Huo, J. Hou. H. Y. Chen, S. Zhang, Y. Jiang, T. L. Chen, Y. Yang, Macromolecules. 42, 6564, 2009 15 Y. J. Cheng, S.H. Yang, C. S. Hsu, Chem. Rev. 109, 5868–5923, 2009 16 K. Kim, J. Liu, A. G. Namboothiry, D. L. Carroll, Appl. Phys. Lett. 90, 163511, 2007. 17 P. Peumans, S. R. Forrest, Appl. Phys. Lett. 79, 126, 2001. 18 N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 258, 1474, 1992. 19 S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 107, 1324, 2007. 20 J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. 78 Lett. 68, 3120, 1996. 21 G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, Science 270, 1789, 1995. 22 C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater, 11, 1, 2001 23 S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 78, 841, 2001. 24 F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater. 13, 85, 2003. 25 G. Li, V. Shortriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704-1, 2005. 26 A. Cravino, P. Leriche, O. Aleveque, S. Roquet, J. Roncali, Adv. Mater. 18, 3033, 2006. 27 F. Schlutter, A. Wild, A. Winter, M. D. Hager, A. Baumgaertel, C. Friebe, U. S. Schubert, Macromolecules. 43, 2759, 2010 28 Y. Liu, M. Nishiura, Y. Wang, Z. Hou, J. Am. Chem. Soc. 128, 5592, 2006 29 S. Maldonado, D. Knapp, N. S. Lewis, J. Am. Chem. Soc. 130, 3300, 2008 30 K. E. Martin, Z. Wang, T Busani, R. M. Garcia, Z. Chen, Y. Jiang,Y. Song, J. L. Jacobsen, T. T. Vu, N. E. Schore, B. S. Swartzentruber, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 132, 8194, 2010 31 A. B. Tamayo, B. Walker, T. Q. Nguyen, J. Phys. Chem. C 112, 11545, 2008. 32 E. Wang, M. Wang, L. Wang, C. Duan, J. Zhang, W. Cai, C. He, H. Wu, Y. Cao, Macromolecules. 42, 13, 2009. 33 H.W. Lin, L. Y. Lin, Y. H. Chen, C. W. Chen, Y. T. Lin, S. W. Chiu, K. T. Wong, Chem. Commun. 47, 7872, 2011. 34 Y. Li, S. P. Singh, P. Sonar, Adv. Mater. 22, 1, 2010. 35 Y. Li, P. Sonar, S. P. Singh, M. S. Soh, M. v. Meurs, J. Tan, J. Am. Chem. Soc. 133, 2198, 2011. 36 B. J. Jung, K. Lee, J. Sun, A. G. Andreou, H. E. Katz, Adv. Funct. Mater. 20, 2930, 2010. 37 K. Kim, J. Liu, A. G. Namboothiry, D. L. Carroll, Appl. Phys. Lett. 90, 163511, 2007. 38 B. Walker, C. Kim, T. Q. Nguyen, Chem. Mater. 23, 470, 2011. 39 H. W. Lin, L. Y. Lin, Y. H. Chen, C.W. Chen, Y. T. Lin, S. W. Chiua , K.T. Wong, Chem. Commun. 47, 7872, 2011. 40 A. W. Hains, Z. Liang, M. A. Woodhouse, B. A. Gregg, Chem. Rev. 110, 6689, 2010. 41 S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, J. Roncali, J. Am. Chem. 79 Soc. 128, 3459, 2006. 42 Y. Kubo, K. Watanabe, R. Nishiyabu, R. Hata, A. Murakami, T.Shoda, H. Ota, Org. Lett. 13, 17, 2011. 43 M. Mastalerz, V. Fischer, C. Q. Ma, R. A. J. Janssen, P. Bauerle, Org. Lett. 11, 4500, 2009. 44 S. Roquet, R. D. Bettignies, P. Leriche, A. Cravino, J. Roncali, J. Mater. Chem. 16, 3040, 2006. 45 Z. Hao, A. Iqbal, Chem. Soc. Rev. 26, 203, 1997. 46 K. Liu, Y. Li, M. Yang, J. Appl. Polymer Sci. 111, 1976, 2009. 47 D. Cao, Q. Liu, W. Zeng, S. Han, J. Peng, S. Liu, J. Polymer Sci. A: polym. Chem. 44, 2395, 2006. 48 Y. Jiang, Y. Wang, J. Hua, S. Qu, S. Qian, H. Tian, J. Polymer Sci. A: polym. Chem. 47, 4400, 2009. 49 B. Tieke, A. R. Rabindranath, K. Zhang, Y. Zhu, Beilstein J. Org. Chem. 6, 830, 2010. 50 C. Kim, J. Liu, J. Lin, A. B. Tamayo, B. Walker, G. Wu, T. Q. Nguyen, Chem. Mater. 24, 1699, 2012. 51 B. Walker, X. Han, C. Kim, A. Sellinger, T. Q. Nguyen, Appl. Mater. Interfaces. 4, 244, 2012. 52 A. R. Rabindranath, Y. Zhu, I. Heim, B. Tieke, Macromolecules. 39, 8250, 2006. 53 Y. Zhu, I. Heim, B. Tieke, Macro. Chem. Phy. 207, 2206, 2006. 54 M. M. Wienk, M. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 20, 2556, 2008. 55 L. Zhang, K. Tajima, K. Hashimoto, Macromolecules. 44, 4222, 2011. 56 Y. Qu, J. Hua, H. Tian, Org. Lett.12, 3320, 2010. 57 L. Deng, W. Wu, H. Guo, J. Zhao, S. Ji, X. Zhang, X. Yuan, C. Zhang, J. Org. Chem. 76, 9294, 2011. 58 P. T. Wu, F. S. Kim, S. A. Jenekhe, J. Am. Chem. Soc. 133, 2198, 2011. 59 H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, J. Am. Chem. Soc. 133, 3272, 2011. 60 W. Li, T. Lee, S. J. Oh, C. R. Kagan, Appl. Mater. Interfaces. 3, 3874, 2011. 61 C. Kanimozhi, P. Balraju, G. D. Sharma, S. Patil, J. Phys. Chem. B, 114, 3095, 80 2010. 62 B. Walker, A.B, Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater. 19, 3063–3069, 2009. 63 T. L. Chen, Y. Zhang, P. Smith, A. Tamayo, Y. Liu, B. Ma, Appl. Mater. Interfaces. 3, 2275, 2011. 64 J. Roncali, Acc. Chem. Resea. 42, 1719, 2009. 65 Y. Tao, Q. Wang, L. Ao, C. Zhong, C. Yang, J. Qin, D. Ma, J. Phys. Chem. C 114, 601, 2010. 66 E. Zhou, S. Yamakawa, K. Tajima, C. Yang, K. Hashimoto, Chem. Mater. 21, 4055, 2009. 67 Y. Yang, Y. Zhou, Q. He, C. He, C. Yang, F. Bai, Y. Li, J. Phys. Chem. B 113, 7745, 2009. 68 劉力瑋,碩士論文,含丙二腈衍生物之多分枝型共軛高分子合成及其電激發光 與光伏特性研究,國立雲林科技大學 化學工程與材料工程研究所,九十七年。 69 P. P. Khlyabich, B. Burkhart, C. H. Ng, B. C. Thompson, Macro. 44, 5079, 2011. 70 A. B. Tamayo, X. D. Dang, B. Walker, J. Seo, T. Kent, T. Q. Nguyen, Appl. Phy. Lett. 94, 103301, 2009. 71 M. M. Wienk, M. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 20, 2556, 2008. 72 G. Li, V. Shrotriya, J. Huang, Y.Yao, K. Emery, Y. Yang, Nat. Mater, , 4, 864, 2005. 73 Y Liu, M Nishiura, Y Wang, Z Hou, J. Am. Chem. Soc. 128, 5592, 2006 74 S. L. Hsu, C. M. Chen, K. H. Wei, J. Polymer Sci. A: Polym. Chem. 48, 5126, 2010. 75Y. Zhang, J. Zou, H. L. Yip, K. S. Chen, J. A. Davies, Y. Sun, A. K. Y. Jen, Macromolecules. 44, 4752, 2011. 76 B. Walker, X. Han, C. Kim, A. Sellinger, T. Q. Nguyen, Appl. Mater. Interfaces. 4, 244, 2012. 77 H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 14, 1005, 2004. 78 J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J.Y. Kim, K. Lee, K. Lee, G. 81 C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 130, 3619-3623, 2008 79 C. P. Chen, S. H. Chan, T. C. Chao, C. Ting, B. T. Ko. J. Am. Chem. Soc. 130, 12828, 2008 80 R. Po, M. Maggini, N. Camaioni, J. Phys. Chem. C. 114, 2, 2010 81 Y. Zhou, Q. Sun, Z. Tan, H. Zhong, C. Yang, Y. Li, J. Phys. Chem. C 111, 6862, 2007 82 C. H. Cheon, S. H. Joo, K. Kim, H. W. Shin, and Y. R. Kim. Macromolecules. 38, 6336, 2005. 83 M.S Kim, B.G Kim, J. Kim, Appl. Mater. Interfaces. 1,1264, 2009. 84 H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 14, 10, 2004. 85 D. H. Wang, D. G. Choi, K. J. Lee,O. O. Park, J. H. Park, Langmuir. 26, 9584, 2010. 86 A. Abdellah , K. Singh Virdi, R. Meier, M. Doblinger, P. M. Buschbaum, C. Scheu, P. Lugli, G. Scarpa, Adv. Funct. Mater. 1,1, 2012
摘要: 
本篇論文分子設計,以拉電子基團三嗪 (trazine) 為中心体與含吡咯併吡咯二酮形成共軛結構,在末端接上咔唑 (Carbazole, CZ) 和三苯胺 (Triphenylamine, TPA) 兩種不同推電子基團 (donor) ,分別合成出末端含有TPA與CZ之星狀寡聚合體TDTPA與TDCZ。經由NMR鑑定確認化學結構、經TGA與DSC分析熱性質熱裂解溫度分別為378 ℃ 及402 ℃ 、玻璃轉換溫度為123 ℃ 及158 ℃ ,皆有不錯的熱穩定性。經紫外光-可見光分析光學發現TDTPA成膜後,其最大吸收波長在318 nm與523 nm ,而TDCZ成膜後之最大吸收波長在327 nm 與514 nm ,表示出TDTPA較具有較長之共軛結構與吸收波長的現象。經循環伏安法分析TDTPA與TDCZ之HOMO分別為-5.56 eV 及-5.6 eV 而LUMO分別為-3.5 eV 及-3.51 eV 。以TDTPA與TDCZ分別依不同比例PC61BM或PC71BM混合製作成薄膜,以AFM觀察表面薄膜型態,發現到TDTPA及TDCZ分別與PC71BM 1:1.5(w/w) 混合製作成薄膜,所呈現的奈米級微相分離為最合適的相分離。TDTPA及TDCZ 分別與PC61BM或PC71BM 1:1.5(w/w) 混合製作成薄膜,以TEM觀察薄膜內部型態,發現到TDTPA及TDCZ分別與PC61BM或PC71BM 1.5(w/w) ,皆呈現良好的網狀互穿結構。以TDTPA/PC61BM與TDCZ/PC61BM複合膜作為光電轉換層,在80 ℃ 下熱處理1小時製作成一系列光伏元件,以TDTPA/PC61BM複合膜所製作的元件中,以TDTPA摻混PC61BM比例1:1.5(w/w) 表現最佳,電流密度Jsc值爲4.44 mA/cm2 、開路電壓VOC值爲0.51 V 、填充因子FF值爲0.31、光電轉換效率PCE值爲0.64 % ; 以同樣的比例摻混PC71BM後,電流密度Jsc值爲4.83 mA/cm2 、開路電壓VOC值爲0.57 V 、填充因子FF值爲0.30、光電轉換效率PCE值爲0.86 % 。此外,TDCZ/PC61BM複合膜所製作的元件,以TDCZ摻混PC61BM比例 1:1.5(w/w) 表現最佳,電流密度Jsc值爲0.83 mA/cm2 、開路電壓VOC值爲0.42 V 、填充因子FF值爲0.30及光電轉換效率PCE值爲0.12 % ; 以同樣的比例摻混PC71BM後,電流密度Jsc值爲1.72 mA/cm2 、開路電壓VOC值爲0.45 V 、填充因子FF值爲0.27及光電轉換效率PCE值爲0.2 % 。由光伏特性分析可知TDTPA/PC61BM複合膜所製作之光伏元件較TDCZ/PC61BM複合膜所製作之光伏元具有較佳之光伏特性。除此之外,本研究嘗試探討光電轉換層之高溫熱處理效應,研究發現TDTPA/PC61BM及TDCZ/PC61BM複合膜,經110 ℃ 熱處理10 min 、30 min 、60 min 後,使得TDPA或TDCZ與PC61BM產生較差之相分離,導致元件之光伏特性下降。

The diketopyrrolopyrrole-based star-shaped oligmer TDTPA and TDCZ were synthesized and used as a donor for bulk heterojunction photovoltaic devices. The TDTPA shows two absorption bands in the range of 300-600 nm with the maximum absorption wavelengths at around 318 and 513 nm, while TDCZ shows two absorption bands in the range of 300-600 nm with the maximum absorption wavelengths at around 327 and 514 nm. A series of bulk heterojunction solar cells based on the blend of TDTPA (or TDCZ) and [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) or [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) were fabricated. The power conversion efficiency (PCE) was strongly dependent on the composition of the blends. The PCE values of TDTPA/PC61BM blend based solar cells were larger than those of TDCZ/PC61BM blend based solar cells. Moreover, higher photovoltaic performances were observed for the star-shaped oligmer/PC61BM blend based solar cells as compared to those of the star-shaped oligmer/PC71BM blend based solar cells. Highest current density (4.83 mAcm-2) and greatest PCE (0.86 %) were observed for the TDTPA/PC71BM blend (1:1.5, w/w) based solar cell.
URI: http://hdl.handle.net/11455/3198
其他識別: U0005-2607201223210800
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.