Please use this identifier to cite or link to this item:
標題: 含推/拉電子基共軛側鏈聚噻吩衍生物之合成與太陽能電池之應用研究
Synthesis of Polythiophene Comprising Electron Donor/Acceptor Pendants for Polymer Solor Cells
作者: 周承威
Chou, Chen-Wei
關鍵字: 聚噻吩;Polythiophene;太陽能電池;共軛側鏈;Polymer Solor Cells;Electron Donor/Acceptor Pendants
出版社: 化學工程學系所
引用: 1. Smalley, P. R. E. Energy & Nano Technology Conference. Rise University 2003. 2. 張正華; 李陵嵐; 葉楚平; 楊平華, 有機與塑膠太陽能電池 (初版). 五南 2007. 3. Becquerel, A. E., Acad. sci. 1839, 9. 4. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, (5), 676-677. 5. Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D., Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional Materials 2009, 19, (8), 1173-1179. 6. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews 2007, 107, (4), 1324-1338. 7. Bundgaard, E.; Hagemann, O.; Manceau, M.; Jorgensen, M.; Krebs, F. C., Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells. Macromolecules 2010, 43, (19), 8115-8120. 8. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chemical Reviews 2010, 110, (11), 6595-6663. 9. O''Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, (6346), 737-740. 10. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Gratzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, (6056), 629-634. 11. Lloyd, M. T.; Anthony, J. E.; Malliaras, G. G., Materials Today 2007, 10, 34. 12. Steinberger, S.; Mishra, A.; Reinold, E.; Levichkov, J.; Uhrich, C.; Pfeiffer, M.; Bauerle, P., Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes. Chemical Communications 2011, 47, (7), 1982-1984. 13. Lin, L.-Y.; Chen, Y.-H.; Huang, Z.-Y.; Lin, H.-W.; Chou, S.-H.; Lin, F.; Chen, C.-W.; Liu, Y.-H.; Wong, K.-T., A Low-Energy-Gap Organic Dye for High-Performance Small-Molecule Organic Solar Cells. Journal of the American Chemical Society 2011, 133, (40), 15822-15825. 14. Lin, L.-Y.; Lu, C.-W.; Huang, W.-C.; Chen, Y.-H.; Lin, H.-W.; Wong, K.-T., New A-A-D-A-A-Type Electron Donors for Small Molecule Organic Solar Cells. Organic Letters 2011, 13, (18), 4962-4965. 15. Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J., Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry B 2005, 109, (19), 9505-9516. 16. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295, (5564), 2425-2427. 17. Advincula, R. C., Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Transactions 2006, (23), 2778-2784. 18. Sang, G.; Zhou, E.; Huang, Y.; Zou, Y.; Zhao, G.; Li, Y., Incorporation of Thienylenevinylene and Triphenylamine Moieties into Polythiophene Side Chains for All-Polymer Photovoltaic Applications. The Journal of Physical Chemistry C 2009, 113, (14), 5879-5885. 19. Sang, G.; Zou, Y.; Huang, Y.; Zhao, G.; Yang, Y.; Li, Y., All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Applied Physics Letters 2009, 94, (19), 193302. 20. Mandoc, M. M.; Veurman, W.; Koster, L. J. A.; Koetse, M. M.; Sweelssen, J.; Boer, B. d.; Blom, P. W. M., Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells. Journal of Applied Physics 2007, 101, (10), 104512. 21. Hoppe, H.; Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry 2006, 16, (1), 45-61. 22. Jenny, N., Materials Today 2010, 14, 462. 23. Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P., Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2010, 22, (34), 3839-3856. 24. Ross, R. B.; Cardona, C. M.; Guldi, D. M.; Sankaranarayanan, S. G.; Reese, M. O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G. C.; Van Keuren, E.; Holloway, B. C.; Drees, M., Endohedral fullerenes for organic photovoltaic devices. Nat Mater 2009, 8, (3), 208-212. 25. Chen, L.-M.; Hong, Z.; Li, G.; Yang, Y., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Advanced Materials 2009, 21, (14-15), 1434-1449. 26. Hallermann, M.; Kriegel, I.; Da Como, E.; Berger, J. M.; von Hauff, E.; Feldmann, J., Charge Transfer Excitons in Polymer/Fullerene Blends: The Role of Morphology and Polymer Chain Conformation. Advanced Functional Materials 2009, 19, (22), 3662-3668. 27. Dennler, G.; Scharber, M. C.; Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2009, 21, (13), 1323-1338. 28. Xin, H.; Kim, F. S.; Jenekhe, S. A., Highly Efficient Solar Cells Based on Poly(3-butylthiophene) Nanowires. Journal of the American Chemical Society 2008, 130, (16), 5424-5425. 29. Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Frechet, J. M. J., The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. Journal of the American Chemical Society 2008, 130, (48), 16324-16329. 30. Thompson, B. C.; Frechet, J. M. J., Polymer–Fullerene Composite Solar Cells. Angewandte Chemie International Edition 2008, 47, (1), 58-77. 31. Yamamoto, S.; Guo, J.; Ohkita, H.; Ito, S., Formation of Methanofullerene Cation in Bulk Heterojunction Polymer Solar Cells Studied by Transient Absorption Spectroscopy. Advanced Functional Materials 2008, 18, (17), 2555-2562. 32. Moule, A. J.; Meerholz, K., Controlling Morphology in Polymer–Fullerene Mixtures. Advanced Materials 2008, 20, (2), 240-245. 33. Matsuo, Y.; Kanaizuka, K.; Matsuo, K.; Zhong, Y.-W.; Nakae, T.; Nakamura, E., Photocurrent-Generating Properties of Organometallic Fullerene Molecules on an Electrode. Journal of the American Chemical Society 2008, 130, (15), 5016-5017. 34. Dante, M.; Peet, J.; Nguyen, T.-Q., Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy. The Journal of Physical Chemistry C 2008, 112, (18), 7241-7249. 35. Baumann, A.; Lorrmann, J.; Deibel, C.; Dyakonov, V., Bipolar charge transport in poly(3-hexyl thiophene)/methanofullerene blends: A ratio dependent study. Applied Physics Letters 2008, 93, (25), 252104. 36. Coffey, D. C.; Reid, O. G.; Rodovsky, D. B.; Bartholomew, G. P.; Ginger, D. S., Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy. Nano Letters 2007, 7, (3), 738-744. 37. 2012. 38. Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y., Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photon 2012, 6, (3), 180-185. 39. newsroom, N. 2012. 40. Brabec, C. J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J. C.; Sariciftci, S., Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters 2001, 340, (3–4), 232-236. 41. Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Muller-Meskamp, L.; Leo, K., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials 2011, 21, (6), 1076-1081. 42. Ahlswede, E.; Hanisch, J.; Powalla, M., Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells. Applied Physics Letters 2007, 90, (16), 163504. 43. Ghosh, A. K.; Feng, T., Merocyanine organic solar cells. Journal of Applied Physics 1978, 49, (12), 5982-5989. 44. Yu, G.; Zhang, C.; Heeger, A. J., Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes. Applied Physics Letters 1994, 64, (12), 1540-1542. 45. Tang, C. W., Two-layer organic photovoltaic cell. Applied Physics Letters 1986, 48, (2), 183-185. 46. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C[sub 60] heterojunction photovoltaic cell. Applied Physics Letters 1996, 68, (22), 3120-3122. 47. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, (5243), 1789-1791. 48. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15, (10), 1617-1622. 49. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials 2006, 18, (5), 572-576. 50. Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences 2008, 105, (8), 2783-2787. 51. ASTM G173-03, 2008. 52. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 2009, 109, (11), 5868-5923. 53. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 2005, 4, (11), 864-868. 54. Hoppe, H.; Sariciftci, N. S., Organic solar cells: An overview. Materials Research Society 2004, 19, (7), 1924. 55. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of Postproduction Treatment on Plastic Solar Cells. Advanced Functional Materials 2003, 13, (1), 85-88. 56. Riedel, I.; Dyakonov, V., Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices. physica status solidi (a) 2004, 201, (6), 1332-1341. 57. Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J., Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Letters 2005, 5, (4), 579-583. 58. Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D. C.; Cook, S.; Durrant, J. R., Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Applied Physics Letters 2005, 86, (6), 063502. 59. Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). Journal of Applied Physics 2005, 98, (4), 043704. 60. Schilinsky, P.; Waldauf, C.; Brabec, C. J., Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Applied Physics Letters 2002, 81, (20), 3885-3887. 61. Reyes-Reyes, M.; Kim, K.; Carroll, D. L., High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C[sub 61] blends. Applied Physics Letters 2005, 87, (8), 083506. 62. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M., A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater 2006, 5, (3), 197-203. 63. White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S., Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Applied Physics Letters 2006, 89, (14), 143517. 64. Shuttle, C. G.; O’Regan, B.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R., Bimolecular recombination losses in polythiophene: Fullerene solar cells. Physical Review B 2008, 78, (11), 113201. 65. Riedel, I.; von Hauff, E.; Parisi, J.; Martin, N.; Giacalone, F.; Dyakonov, V., Diphenylmethanofullerenes: New and Efficient Acceptors in Bulk-Heterojunction Solar Cells. Advanced Functional Materials 2005, 15, (12), 1979-1987. 66. Lim, B.; Baeg, K.-J.; Jeong, H.-G.; Jo, J.; Kim, H.; Park, J.-W.; Noh, Y.-Y.; Vak, D.; Park, J.-H.; Park, J.-W.; Kim, D.-Y., A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thin-Film Transistors and Solar Cells. Advanced Materials 2009, 21, (27), 2808-2814. 67. Roncali, J., Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromolecular Rapid Communications 2007, 28, (17), 1761-1775. 68. Duan, C.; Chen, K.-S.; Huang, F.; Yip, H.-L.; Liu, S.; Zhang, J.; Jen, A. K. Y.; Cao, Y., Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional Conjugated Polymers with Donor-π-Bridge-Acceptor Side Chains. Chemistry of Materials 2010, 22, (23), 6444-6452. 69. Sahu, D.; Padhy, H.; Patra, D.; Huang, J.-h.; Chu, C.-w.; Lin, H.-C., Synthesis and characterization of novel low-bandgap triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (24), 5812-5823. 70. Vaynzof, Y.; Brenner, T. J. K.; Kabra, D.; Sirringhaus, H.; Friend, R. H., Compositional and Morphological Studies of Polythiophene/Polyfluorene Blends in Inverted Architecture Hybrid Solar Cells. Advanced Functional Materials 2012, n/a-n/a. 71. Zhou, E.; Cong, J.; Tajima, K.; Yang, C.; Hashimoto, K., Synthesis and Photovoltaic Properties of Donor–Acceptor Copolymer Based on Dithienopyrrole and Thienopyrroledione. Macromolecular Chemistry and Physics 2011, 212, (3), 305-310. 72. Zhou, E.; Cong, J.; Tajima, K.; Hashimoto, K., Synthesis and Photovoltaic Properties of Donor−Acceptor Copolymers Based on 5,8-Dithien-2-yl-2,3-diphenylquinoxaline. Chemistry of Materials 2010, 22, (17), 4890-4895. 73. Wienk, M. M.; Struijk, M. P.; Janssen, R. A. J., Low band gap polymer bulk heterojunction solar cells. Chemical Physics Letters 2006, 422, (4–6), 488-491. 74. Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; Huong Nguyen, L.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E., Low Band Gap Donor−Acceptor Conjugated Polymers toward Organic Solar Cells Applications. Macromolecules 2006, 40, (1), 65-72. 75. Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. Journal of the American Chemical Society 2008, 130, (48), 16144-16145. 76. Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K., Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules 2008, 41, (22), 8302-8305. 77. Hou, J.; Chen, H.-Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G., Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society 2009, 131, (43), 15586-15587. 78. Choi, S. H.; Frisbie, C. D., Enhanced Hopping Conductivity in Low Band Gap Donor−Acceptor Molecular Wires Up to 20 nm in Length. Journal of the American Chemical Society 2010, 132, (45), 16191-16201. 79. Lee, W.-Y.; Cheng, K.-F.; Wang, T.-F.; Chen, W.-C.; Tsai, F.-Y., Photovoltaic properties of low-band-gap fluorene-based donor–acceptor copolymers. Thin Solid Films 2010, 518, (8), 2119-2123. 80. Tsai, J.-H.; Chueh, C.-C.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C.; Chen, E.-C.; Meng, H.-F., New thiophene-phenylene-thiophene acceptor random conjugated copolymers for optoelectronic applications. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (11), 2351-2360. 81. Tsai, J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C., Synthesis of New Indolocarbazole-Acceptor Alternating Conjugated Copolymers and Their Applications to Thin Film Transistors and Photovoltaic Cells. Macromolecules 2009, 42, (6), 1897-1905. 82. Li, Y.; Zou, Y., Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility. Advanced Materials 2008, 20, (15), 2952-2958. 83. Tan, Z. a.; Zhou, E.; Yang, Y.; He, Y.; Yang, C.; Li, Y., Synthesis, characterization and photovoltaic properties of thiophene copolymers containing conjugated side-chain. European Polymer Journal 2007, 43, (3), 855-861. 84. Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y., Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. Journal of the American Chemical Society 2006, 128, (14), 4911-4916. 85. Zhou, E.; Tan, Z. a.; Huo, L.; He, Y.; Yang, C.; Li, Y., Effect of Branched Conjugation Structure on the Optical, Electrochemical, Hole Mobility, and Photovoltaic Properties of Polythiophenes. The Journal of Physical Chemistry B 2006, 110, (51), 26062-26067. 86. Sang, G.; Zou, Y.; Li, Y., Two Polythiophene Derivatives Containing Phenothiazine Units: Synthesis and Photovoltaic Properties. The Journal of Physical Chemistry C 2008, 112, (31), 12058-12064. 87. Hou, J.; Huo, L.; He, C.; Yang, C.; Li, Y., Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl)thiophene)s with Conjugated Side Chains. Macromolecules 2005, 39, (2), 594-603. 88. Hou, J.; Tan, Z. a.; He, Y.; Yang, C.; Li, Y., Branched Poly(thienylene vinylene)s with Absorption Spectra Covering the Whole Visible Region. Macromolecules 2006, 39, (14), 4657-4662. 89. Tan, Z. a.; Hou, J.; He, Y.; Zhou, E.; Yang, C.; Li, Y., Synthesis and Photovoltaic Properties of a Donor−Acceptor Double-Cable Polythiophene with High Content of C60 Pendant. Macromolecules 2007, 40, (6), 1868-1873. 90. Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Li, Y., Polythiophene Derivative with Phenothiazine−Vinylene Conjugated Side Chain:  Synthesis and Its Application in Field-Effect Transistors. Macromolecules 2007, 40, (20), 7231-7237. 91. Li, H.; Parameswaran, M.; Nurmawati, M. H.; Xu, Q.; Valiyaveettil, S., Synthesis and Structure−Property Investigation of Polyarenes with Conjugated Side Chains. Macromolecules 2008, 41, (22), 8473-8482. 92. Huo, L.; Chen, T. L.; Zhou, Y.; Hou, J.; Chen, H.-Y.; Yang, Y.; Li, Y., Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules 2009, 42, (13), 4377-4380. 93. Huo, L.; Tan, Z. a.; Wang, X.; Zhou, Y.; Han, M.; Li, Y., Novel two-dimensional donor–acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, (12), 4038-4049. 94. Zhou, E.; He, C.; Tan, Z. A.; Yang, C.; Li, Y., Effect of side-chain end groups on the optical, electrochemical, and photovoltaic properties of side-chain conjugated polythiophenes. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, (16), 4916-4922. 95. Hou, J.; Yang, C.; Li, Y., Synthesis of regioregular side-chain conjugated polythiophene and its application in photovoltaic solar cells. Synthetic Metals 2005, 153, (1–3), 93-96. 96. Zou, Y.; Sang, G.; Wu, W.; Liu, Y.; Li, Y., A polythiophene derivative with octyloxyl triphenylamine-vinylene conjugated side chain: Synthesis and its applications in field-effect transistor and polymer solar cell. Synthetic Metals 2009, 159, (3–4), 182-187. 97. Tan, Z. a.; Tang, R.; Zhou, E.; He, Y.; Yang, C.; Xi, F.; Li, Y., Electroluminescence and photovoltaic properties of poly(p-phenylene vinylene) derivatives with dendritic pendants. Journal of Applied Polymer Science 2008, 107, (1), 514-521. 98. Huo, L.; Tan, Z. a.; Zhou, Y.; Zhou, E.; Han, M.; Li, Y., Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band. Macromolecular Chemistry and Physics 2007, 208, (12), 1294-1300. 99. Shen, P.; Sang, G.; Lu, J.; Zhao, B.; Wan, M.; Zou, Y.; Li, Y.; Tan, S., Effect of 3D π−π Stacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. Macromolecules 2008, 41, (15), 5716-5722. 100. Huo, L.; Zhou, Y.; Li, Y., Alkylthio-Substituted Polythiophene: Absorption and Photovoltaic Properties. Macromolecular Rapid Communications 2009, 30, (11), 925-931. 101. Chang, Y. T.; Hsu, S. L.; Su, M. H.; Wei, K. H., Soluble Phenanthrenyl-Imidazole-Presenting Regioregular Poly(3-octylthiophene) Copolymers Having Tunable Bandgaps for Solar Cell Applications. Advanced Functional Materials 2007, 17, (16), 3326-3331. 102. Chang, Y.-T.; Hsu, S.-L.; Chen, G.-Y.; Su, M.-H.; Singh, T. A.; Diau, E. W.-G.; Wei, K.-H., Intramolecular Donor–Acceptor Regioregular Poly(3-hexylthiophene)s Presenting Octylphenanthrenyl-Imidazole Moieties Exhibit Enhanced Charge Transfer for Heterojunction Solar Cell Applications. Advanced Functional Materials 2008, 18, (16), 2356-2365. 103. Chang, Y.-T.; Hsu, S.-L.; Su, M.-H.; Wei, K.-H., Intramolecular Donor–Acceptor Regioregular Poly(hexylphenanthrenyl-imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications. Advanced Materials 2009, 21, (20), 2093-2097. 104. Peeters, H.; Verbiest, T.; Koeckelberghs, G., Incorporation of a conjugated side-chain in regioregular polythiophenes: Chiroptical properties and selective oxidation. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, (7), 1891-1900. 105. Yu, C.-Y.; Ko, B.-T.; Ting, C.; Chen, C.-P., Two-dimensional regioregular polythiophenes with conjugated side chains for use in organic solar cells. Solar Energy Materials and Solar Cells 2009, 93, (5), 613-620. 106. Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K. Y., Development of New Conjugated Polymers with Donor−π-Bridge−Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society 2009, 131, (39), 13886-13887. 107. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials 2006, 18, (6), 789-794. 108. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M., Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society 2007, 130, (2), 732-742. 109. Hou, J.; Chen, T. L.; Zhang, S.; Huo, L.; Sista, S.; Yang, Y., An Easy and Effective Method To Modulate Molecular Energy Level of Poly(3-alkylthiophene) for High-Voc Polymer Solar Cells. Macromolecules 2009, 42, (23), 9217-9219. 110. Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganas, O., Polymer Solar Cells Based on a Low-Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm. Advanced Functional Materials 2005, 15, (5), 745-750. 111. Zheng, Q.; Jung, B. J.; Sun, J.; Katz, H. E., Ladder-Type Oligo-p-phenylene-Containing Copolymers with High Open-Circuit Voltages and Ambient Photovoltaic Activity. Journal of the American Chemical Society 2010, 132, (15), 5394-5404. 112. Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R., Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics A: Materials Science & Processing 2004, 79, (1), 31-35. 113. Schulz, G. L.; Chen, X.; Holdcroft, S., High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with [6,6]-phenyl C[sub 61] butyric acid methyl ester for use in efficient photovoltaic devices. Applied Physics Letters 2009, 94, (2), 023302. 114. Zhang, F.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O., Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends. Advanced Functional Materials 2006, 16, (5), 667-674. 115. Chen, M.-H.; Hou, J.; Hong, Z.; Yang, G.; Sista, S.; Chen, L.-M.; Yang, Y., Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions. Advanced Materials 2009, 21, (42), 4238-4242. 116. Skabara, P. J.; Berridge, R.; Serebryakov, I. M.; Kanibolotsky, A. L.; Kanibolotskaya, L.; Gordeyev, S.; Perepichka, I. F.; Sariciftci, N. S.; Winder, C., Fluorene functionalised sexithiophenes-utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. Journal of Materials Chemistry 2007, 17, (11), 1055-1062. 117. Mondal, R.; Becerril, H. A.; Verploegen, E.; Kim, D.; Norton, J. E.; Ko, S.; Miyaki, N.; Lee, S.; Toney, M. F.; Bredas, J.-L.; McGehee, M. D.; Bao, Z., Thiophene-rich fused-aromatic thienopyrazine acceptor for donor-acceptor low band-gap polymers for OTFT and polymer solar cell applications. Journal of Materials Chemistry 2010, 20, (28), 5823-5834. 118. Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M., Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Advanced Functional Materials 2006, 16, (13), 1694-1704. 119. Lu, J.; Liang, F.; Drolet, N.; Ding, J.; Tao, Y.; Movileanu, R., Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organic solar cell applications. Chemical Communications 2008, (42), 5315-5317. 120. Wakim, S.; Beaupre, S.; Blouin, N.; Aich, B.-R.; Rodman, S.; Gaudiana, R.; Tao, Y.; Leclerc, M., Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative. Journal of Materials Chemistry 2009, 19, (30), 5351-5358. 121. Beaupre, S.; Boudreault, P.-L. T.; Leclerc, M., Solar-Energy Production and Energy-Efficient Lighting: Photovoltaic Devices and White-Light-Emitting Diodes Using Poly(2,7-fluorene), Poly(2,7-carbazole), and Poly(2,7-dibenzosilole) Derivatives. Advanced Materials 2010, 22, (8), E6-E27. 122. Xia, Y.; Su, X.; He, Z.; Ren, X.; Wu, H.; Cao, Y.; Fan, D., An Alternating Copolymer Derived from Indolo[3,2-b]carbazole and 4,7-Di(thieno[3,2-b]thien-2-yl)-2,1,3-benzothiadiazole for Photovoltaic Cells. Macromolecular Rapid Communications 2010, 31, (14), 1287-1292. 123. Zhou, E.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K., Indolo[3,2-b]carbazole-based alternating donor-acceptor copolymers: synthesis, properties and photovoltaic application. Journal of Materials Chemistry 2009, 19, (41), 7730-7737. 124. Chul Kim, S.; Vijaya Kumar Naidu, B.; Lee, S.-K.; Shin, W.-S.; Jin, S.-H.; Jung, S.-J.; Cho, Y.-R.; Shim, J.-M.; Kook Lee, J.; Wook Lee, J.; Hyeon Kim, J.; Gal, Y.-S., Synthesis and photovoltaic properties of novel PPV-derivatives tethered with spiro-bifluorene unit for polymer solar cells. Solar Energy Materials and Solar Cells 2007, 91, (6), 460-466. 125. Bijleveld, J. C.; Shahid, M.; Gilot, J.; Wienk, M. M.; Janssen, R. A. J., Copolymers of Cyclopentadithiophene and Electron-Deficient Aromatic Units Designed for Photovoltaic Applications. Advanced Functional Materials 2009, 19, (20), 3262-3270. 126. Chan, S.-H.; Chen, C.-P.; Chao, T.-C.; Ting, C.; Lin, C.-S.; Ko, B.-T., Synthesis, Characterization, and Photovoltaic Properties of Novel Semiconducting Polymers with Thiophene−Phenylene−Thiophene (TPT) as Coplanar Units. Macromolecules 2008, 41, (15), 5519-5526. 127. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S., High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. Journal of the American Chemical Society 2004, 126, (11), 3378-3379. 128. Thompson, B. C.; Kim, B. J.; Kavulak, D. F.; Sivula, K.; Mauldin, C.; Frechet, J. M. J., Influence of Alkyl Substitution Pattern in Thiophene Copolymers on Composite Fullerene Solar Cell Performance. Macromolecules 2007, 40, (21), 7425-7428. 129. Gong, C.; Song, Q. L.; Yang, H. B.; Li, J.; Li, C. M., Polymer solar cell based on poly(2,6-bis(3-alkylthiophen-2-yl)dithieno-[3,2-b;2′,3′-d]thiophene). Solar Energy Materials and Solar Cells 2009, 93, (11), 1928-1931. 130. McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F., Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 2006, 5, (4), 328-333. 131. Zhao, N.; Botton, G. A.; Zhu, S.; Duft, A.; Ong, B. S.; Wu, Y.; Liu, P., Microscopic Studies on Liquid Crystal Poly(3,3‘ ‘‘-dialkylquaterthiophene) Semiconductor. Macromolecules 2004, 37, (22), 8307-8312. 132. Wang, H.-J.; Chan, L.-H.; Chen, C.-P.; Lin, S.-L.; Lee, R.-H.; Jeng, R.-J., Bulky side-chain density effect on the photophysical, electrochemical and photovoltaic properties of polythiophene derivatives. Polymer 2011, In Press, Corrected Proof, 326. 133. Saeki, A.; Fukumatsu, T.; Seki, S., Intramolecular Charge Carrier Mobility in Fluorene-Thiophene Copolymer Films Studied by Microwave Conductivity. Macromolecules 2011, 44, (9), 3416-3424. 134. Fong, H. H.; Papadimitratos, A.; Malliaras, G. G., Nondispersive hole transport in a polyfluorene copolymer with a mobility of 0.01 cm[sup 2] V[sup -1] s[sup -1]. Applied Physics Letters 2006, 89, (17), 172116. 135. Lin, S.-L.; Chan, L.-H.; Lee, R.-H.; Yen, M.-Y.; Kuo, W.-J.; Chen, C.-T.; Jeng, R.-J., Highly Efficient Carbazole-π-Dimesitylborane Bipolar Fluorophores for Nondoped Blue Organic Light-Emitting Diodes. Advanced Materials 2008, 20, (20), 3947-3952. 136. Kwon, O.; Barlow, S.; Odom, S. A.; Beverina, L.; Thompson, N. J.; Zojer, E.; Bredas, J.-L.; Marder, S. R., Aromatic Amines:  A Comparison of Electron-Donor Strengths. The Journal of Physical Chemistry A 2005, 109, (41), 9346-9352. 137. Drolet, N.; Morin, J. F.; Leclerc, N.; Wakim, S.; Tao, Y.; Leclerc, M., 2,7-Carbazolenevinylene-Based Oligomer Thin-Film Transistors: High Mobility Through Structural Ordering. Advanced Functional Materials 2005, 15, (10), 1671-1682. 138. Li, W.; Han, Y.; Chen, Y.; Li, C.; Li, B.; Bo, Z., Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells. Macromolecular Chemistry and Physics 2010, 211, (8), 948-955. 139. Huang, S.-P.; Jen, T.-H.; Chen, Y.-C.; Hsiao, A.-E.; Yin, S.-H.; Chen, H.-Y.; Chen, S.-A., Effective Shielding of Triplet Energy Transfer to Conjugated Polymer by Its Dense Side Chains from Phosphor Dopant for Highly Efficient Electrophosphorescence. Journal of the American Chemical Society 2008, 130, (14), 4699-4707. 140. Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. Journal of the American Chemical Society 2009, 131, (22), 7792-7799. 141. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials 2010, 22, (20), E135-E138. 142. Zhang, Z. G.; Zhang, S.; Min, J.; Cui, C.; Geng, H.; Shuai, Z.; Li, Y., Side Chain Engineering of Polythiophene Derivatives with a Thienylene–Vinylene Conjugated Side Chain for Application in Polymer Solar Cells. Macromolecules 2012, 45, (5), 2312-2320. 143. Zhang, Z.-G.; Zhang, S.; Min, J.; Chui, C.; Zhang, J.; Zhang, M.; Li, Y., Conjugated Side-Chain Isolated Polythiophene: Synthesis and Photovoltaic Application. Macromolecules 2011, 45, (1), 113-118.
本研究經由Stille coupling反應聚合出一系列主鏈含有烷基取代共軛雙噻吩 ( Bithiophene, BT),側鏈導入不同比例推電子基團3,6雙第三丁基咔唑( 3,6-di-tert-butyl-carbazole, tCz) 與拉電子基團2,2’亞甲基雙苯並噻唑( dibenzo[d]thiazol-2-ylmethane, DBT) 之二維共軛聚噻吩( 2D-PTs)。此一系列2D-PTs高分子皆可溶於一般有機溶劑,且具備良好熱穩定性。由紫外光-可見光光譜發現,側鏈共軛基團DBT含量提升可降低高分子能隙 ( 1.81 ~ 2.03 eV)。由電化學實驗得知,改變側鏈共軛基團tCz與DBT的比例可有效調整HOMO能階 ( -5.28 ~ -5.43 eV)。由AFM表面薄膜型態分析,2D-PTs在主鏈導入BT結構可降低側鏈密度,提供自由空間,使高分子皆與碳球衍生物PC71BM有良好相容性;另一方面tCz比例提升使高分子與PC71BM不易有奈米尺度的微相分離,不利於激子產生與拆離。將高分子與PC71BM混摻製作成太陽能電池元件後發現,因為DBT含量提升可降低HOMO能階,進而得到較大的開路電壓( Open circuit voltage, Voc )。高分子之光伏特性正比於側鏈拉電子基團DBT含量,DBT含量越高,太陽能電池光電轉換效率( Photoelectric conversion efficiency, PCE) 越高,故以高分子PT(DBT)1/PC71BM ( w/w = 1 : 1) 複合膜所製備之太陽能電池具有最高之PCE值,效率為1.29 %,Voc 為0.62 V,短路電流 ( Short circuit current, Jsc)
為6.55 mA/cm2,填充因子 ( Fill factor, FF) 為0.32。

A series of polythiophene derivatives, composed of electron donating group 3,6- di- tert- butyl- carbazole ( tCz) and electron accepting groups dibenzo - [d] thiazol- 2- ylmethane ( DBT), were synthesized. The resulting polymers can be soluble in common organic solvents, and have good thermal stability. Through changing the ratio of the electron accepting group DBT and the electron-donating group tCz in the conjugated polymer, the electronic properties and energy levels of the conjugated polymer were effectively tuned. A red-shift of UV-vis absorption band was observed for the polythiophene with higher DBT content. AFM results indicated that the introduction of the alkyl-substituted bithiophene ( BT) into the main-chain of conjugated polymer can reduce the side-chain density and further provide free space between side-chains, consequently a better compatibility between Polymer and PC71BM was observed for the blend films. On the other hand, poor compatibility between the polymer and PC71BM was observed for the polythiophene containing higher tCz content, which is not favorable for the charge separation of the exciton. Higher photovoltaic performances were observed for the PT(DBT)1/PC71BM-based PSCs as compared to those of the other copolymer based PSCs. The power conversion efficiency ( PCE) based on the PT(DBT)1 /PC71BM ( w/w = 1:1) blend were 1.29% , open-circuit voltage (Voc) of PSC 0.62 V, short-circuit current ( Jsc) of PSC 6.55 mA cm-2, and fill factor ( FF) of 0.32, respectively.
其他識別: U0005-2208201217453900
Appears in Collections:化學工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.