Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3207
標題: 圖佈印刷應用於PC/ABS基材表面金屬化之研究
Surface Metallization of PC/ABS Substrate by Inkjet-printing Technology
作者: 廖春暉
Liao, Chun-Huei
關鍵字: 金屬化;PC/ABS;噴墨印刷;無電電鍍銅;天線;metallization;catalyst;inkjet-printed;electroless copper plating;antenna
出版社: 化學工程學系所
引用: 1. K. Heymann, W. Riedel, and G. Woldt, “Electroplating of Plastics in Theory and Practice”, Angewandte Chemie International Edition, 1970, 82, 400. 2. N. Inagaki and H. Kimura, “Electroless Copper Plating on Acrylonitrile Butadiene Styrene Material Surfaces Without Chromic Acid Etching and Palladium Catalyst” , Journal of Applied Polymer Science, 2009, 111, 1034. 3. A. Garcia, T. Berthelot, P. Viel, A. Mesnage, P. Je’gou, F. Nekelson, S. Roussel, and S. Palacin, “ABS Polymer Electroless Plating through a One-Step Poly(acrylic acid) Covalent Grafting”, Applied Materials & Interfaces, 2010, 2,4. 4. D. Li, K. Goodwin, and C.Yang, “Electroless copper deposition on aluminum-seeded ABS plastics”, Journal of Materials Science, 2008, 43. 5. Y. Nishi1, N. Kunikyo, M. Kanda, L. Lebrun, and D. Guyomar, “Impact Value of High Electric Conductive ABS Composites with Copper Powder Dispersion Prepared by Solution-Cast Method”, Materials Transactions, 2010, 51, 1. 6. J. Heinzl, and C. H. Hertz, “Ink-jet Printing”, Advance in Electronics and Electron Physics, 1985, 65, 91. 7. 黃忠仁,“軟性基材之噴墨鍍膜研究”,華梵大學,碩士論文,2010。 8. S. Fuller, E. Wilhelm, and J. Jacobson, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems”, Journal of Microelectromechanical Systems, 2002, 11, 54. 9. 郭永吉,“壓電式噴墨系統之液滴噴射行為模擬”,國立東華大學,碩士論文,2003。 10. K. F. Teng and R. W. Vest, “Metallization of Solar Sells with Ink Jet Printing and SilverMetallo-Organic Inks” IEEE Transactions on Components Hybrids and Manufacturing Technology, 1988, 11, 291. 11. T. Hebner, C. Wu, D. Marcy, M. Lu, and J. Sturm, “Ink-Jet Printing of Dopedd Polymers for Organic Light Emitting Devices”, Applied Physics Letters, 1988, 72, 519. 12. J. Bharathan and Y. Yang, “Polymer Electroluminescent Devices Processed by Inkjet Printing : I. Polymer Light-Emitting Logo”, Applied Physics Letters, 1998, 72, 2660. 13. 逢板哲爾,“化學反應製造金屬薄膜”,表面處理工業雜誌,第三期,民國85年。 14. 張良中,“非導體表面之金屬化”,工業材料,第112期,民國85年。 15. 莊萬發,“無電解鍍金-化學鍍金技術”,復漢出版社,民國85年。 16. M. Paunovic,“Electrochemical Aspects of Electroless Deposition of Metals”, Plating, 1968, 55, 1161. 17. R. Goldstein and P. Kukanskis, “Method and Composition for Continuous Electroless Copper Deposition Using a Hypophosphite Reducing Agent in the Presence of Cobalt or Nickel Ions”, U.S. Patent 4,1981, 265,943. 18. R. Donald, “Electroless Copper Deposition Solutions with Hypophosphite Reducing Agent”, U.S. Patent 4, 1982, 325,990. 19. A. Hung, “Electroless Copper Deposition with Hypophosphite as Reducing Agent”, Plating and Surface Finishing, 1988, 1, 62. 20. Y. Shacham-Diamand and S. Lopatin,“Integrated Electroless Metallization for ULSI ”, Electrochimica Acta, 1999, 44, 3639. 21. J. E. A. M. Van. Den. Meerakker,“On the Mechanism of Electroless PlatingI, Oxidation of Formaldehyde at Different Electrode Surface”, Journal of Applied Electrochemistry, 1981, 11, 387. 22. J. E. A. M. Van. Den. Meerakker,“On the Mechanism of Electroless PlatingII, One Mechanism for Different Reductants”, Journal of Applied Electrochemistry, 1981, 11, 395. 23. H. Honma and T. Kobayashi,“Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent”, Journal of Electrochemical Society, 1994, 141, 3. 24. Y. M. Lin and S. Chern,“Effects of Additives and Chelating Agents on Electroless Copper Plating”, Applied Surface Science, 2001, 178, 116. 25. J. Li, H. Hayden, and P. A. Kohl, “The Influence of 2,2′-dipyridyl on Non-formaldehyde Electroless Copper plating”, Electrochimica Acta, 2004, 49, 11. 26. A. Kinoshita, K. Araki, H. Nawafune, and S. Mizumoto, “Electroless Copper Plating Bath and Method”, US Patent 4, 1987, 650,691. 27. L.N. Schoenberg, “Use of Organic Additives to Stabilize and Enhance the Deposition Rate of Eletroless Copper Plating”, Journal of the Electrochemical Society, 1972, 119, 11. 28. M. Sone, K. Kobayakawa, M. Saitou, and Y. Sato, “Electroless Copper Plating Using FeII as a Reducing Agent”, Electrochimica Acta , 2004, 49, 233. 29. J. Li and P. A. Kohl, “The Acceleration of Nonformaldehyde Electroless Copper Plating”, Journal of the Electrochemical Society, 2002, 149, 12. 30. J. Li and P. A. Kohl, “The Depositon Characteristics of Aceelerated Nonformaldehyde Electroless Copper Plating”, Journal of Electroanalytical Chemistry, 2003, 8, 558. 31. A. Vaskelis and E. Norkus, “Autocatalytic Processes of Copper(II) and Silver(I) Reduction”, Electrochemica Acta, 1999, 44, 3667. 32. A. Vaskelis, J. Jaciauskiene, A. Jagminiene, and E. Norkus, “Obtaining of IB Group Metal Film by Novel Electroless Deposition Method ”, Solid State Sciences, 2002, 4, 1299. 33. A. Vaskelis, I. Stankeviciene, A. Jagminiene, L. T. Tamasiunaite, and E. Norkus,“The Autocatalytic Reduction of Copper(II) by Cobolt(II) in Aqueous Diethylenetriamine Solution Studied by EQCM”, Journal of Electroanalytical Chemistry, 2008, 622, 136. 34. 黃上恩,”化學方法製備鎳奈米顆粒及無鈀中性無電鍍銅配方於軟性聚亞醯胺基板之金屬化研究”,國立中興大學化工系,碩士論文,2010。 35. X. L. Yuan, Z. F. Yang, Y. He, Z. X. Wang, and Z. L. Wang, “Pd-free surface activation technique for ABS surface metallization”, Transactions of the Institute of Metal Finishing, 2011, 89, 202. 36. 汪建民,“材料分析”,中國材料科學學會出版,民國87年。 37. 張立,“微結構分析與電子顯微鏡學”,材料與社會雜誌,第37期,79年。 38. N. J. Harrick, “Internal Reflection Spectroscopy”, Wiley, New York, 1967. 39. F. K. LeGoues, B. D. Silverman, and P. S. Ho, “The Microstructure of Metal-Polyimide Interfaces”, Journal of Vacuum Science and Technology A6, 1988, 4 , 2200. 40. 潘扶民,洪顯仁,林毓麟,郭裕銘,“ESCA, AES及SIMS表面分析技術”,材料與社會雜誌,第37期,民國79年。
摘要: 
近年來,由於高密度微型製程不斷增長的需求,電路和電子互連的金屬佈線已備受關注,並有利於產品的小型化。具有特定電學、光學功能的噴墨印刷,已經引起了極大的興趣,作為替代傳統的真空沉積和光刻圖案方法,特別是在低成本,大面積電子領域。
由於智慧型手機、平板電腦、筆記型電腦的發展需求不斷,為了因應通訊、網路(wifi、3G…等)傳輸速度越來越快的步伐,在天線設計製程上需要更多的研究及開發。舊製程目前是PC/ABS基材裡混埋金屬觸媒,再利用雷射雕刻機台,進行線路化的雕刻布線使觸媒裸露,接著再進入無電電鍍銅液進行無電電鍍銅,進而產生所需的銅線路,若是觸媒裸露不均或是含量不足,後續的無電電鍍銅將會有漏鍍、缺鍍,甚至不起鍍的瑕疵;沒有雷射雕刻布線的區域,仍然是富含著金屬觸媒,這樣形同浪費也直接造成成本的提升;另一方面,雷射雕刻機台動輒上千萬,屬於貴重機台,若是可以減少,甚至避免使用雷射雕刻機台,在成本上將是大幅的減少,因此本實驗正是為了取代舊製程,進而減少成本所研發。
本實驗主要是利用圖佈印刷技術,將金屬觸媒墨水在PC/ABS基材上印刷出所要的圖案、佈線,其經由離子交換劑螯合金屬離子,接著還原劑將金屬離子還原成金屬原子觸媒,完成金屬化。無電電鍍銅後,緊接著再進行無電電鍍鎳,這步驟主要用來防止銅層氧化。吾人利用ATR-FTIR檢視各步驟官能基上的變化,XPS檢視各步驟離子吸附的狀態,SEM觀察無電電鍍銅、無電電鍍鎳的結晶姓、緻密性,再利用膠帶測試無電電鍍銅與PC/ABS基材的附著力。實驗結果顯示,智慧型手機天線製程是可以不必經由雷射雕刻機台,而可以直接經由圖佈印刷與無電電鍍完成,並且直接圖佈印刷的金屬鍍層與PC/ABS基材有良好的附著力,這顯示化學鍵結力擁有與物理粗糙度相同的附著力。

In recent years, metal nanowirting for circuitry and electronic interconnection has attracred much attention due to the growing requirements of highly integrated microcircuits, and benefit to the minizturization of device features. Inkjet printing of functional materials with specific electrical, optical, chemical, biological or structural functionalties has gained significant interest as an alternative to conventional vacuum deposition and photolithographic patterning, methods, especially in the area of low-cost and karge-area electronics.
Due to the requirements of smart phone, tablet, personal computer and notebook that network(wifi, 3G …) transfer speeds are much faster, the process of antennal design have to make more research and development. The first step of traditional process is to mix metal catalysts into PC/ABS substrate, the second step is to use laser for patterning, by our request so that the catalysts are exposed, and then immersed into an electroless copper plating, solution to form patterns. If the exposed catalysts are uneven or insufficient, subsequent electroless copper plating will have some issues. The other unpatterned area still has metal catalyst even though it does not go through laser process. This will increase cost. On the other hand, the laser machine is expensive. If we do not use the laser process then the cost will be significantly reduced. This study will replace the traditional process with a direct inkjet printing process for cost saving
In this study, we used inkjet printing technology to make patterns that we want. The patterns were directly defined by an inkjet printing tool. The printed in patterns could catch metal ions from an aqueous solution. Subsequently, metal ions were reduced by a reducing agent as catalysts for the following copper electroless deposition. After the copper electroless deposition, nickel electroless deposition was carried out to protect the copper film from oxidation. We use ATR-FTIR to cheack the changes of functional groups of every steps. We use XPS to cheack the adsorption of ions of every steps. We use SEM to Observe the grain of copper film and nickel film. Adhesion between the deposited copper metal and the PC/ABS surface was evaluated by Scotch tape test. Results show that metal patterns formed by electroless deposition used as antenna of smart phones can be directly defined on PC/ABS substrate without using a laser process. The direct patterned metal films (Ni/Cu) on PC/ABS substrate has a good adhesion, implying that chemical bonding strength is as better as that caused by physical roughness.
URI: http://hdl.handle.net/11455/3207
其他識別: U0005-2507201218202800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.