Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWei-Ping Dowen_US
dc.contributor.authorYan, Jhih-Jyunen_US
dc.identifier.citation1. H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice-Hall Inc., 2001. 2. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections”, IBM J. Res. & Dev., 42, 567, 1998. 3. 竇維平,黃河樹,蘇勇誌,與顏銘瑤,電鍍銅添加劑在 IC 及 IC 構裝基板上的應用,化工卷期,第50卷,2003。 4. W. P. Dow, H. H. Chen, M. Y. Yen , W. H. Chen, K. H. Hsu, P. Y. Chuang, H. Ishizuka, N. Sakagawa, and R. Kimizukad, “Through-Hole Filling by Copper Electroplating”, J. Electrochem. Soc., 155, D750, 2008. 5. W. P. Dow and H. H. Chen, “A novel copper electroplating formula for laser-drilled micro via and through hole filling”, Circuit World, 30, 33, 2004. 6. P. Dixit and J. Miao, “Aspect-Ratio-Dependent copper Electrodeposition Technique for Very High Aspect-Ratio Through-Hole Plating”, J. Elctrochem. Soc., 153, G552, 2006. 7. P. Dixit, J. Miao, and R. Preisser, “Fabrication of high aspect ratio 35 {mu} m pitch through-wafer copper interconnects by electroplating for 3-D wafer stacking”, Electrochem. Solid-State Lett., 9, G305, 2006. 8. L. Xu, P. Dixit, J. Miao, and J. H. L. Pang, “Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins”, Appl. Phys. Lett., 90, 033111, 2007. 9. W. P. Dow, C. W. Lu, J. Y. Lin, and F. C. Hsu, “Highly Selective Cu Electrodeposition for Filling Through Silicon Holes”, Electrochem. Solid-State Lett., 14, D63, 2011. 10. W. P. Dow, D. H. Liu, C. W. Lu, C. H. Chen, J. J. Yan, and S. M. Huang, “Through Hole Filling by Copper Electroplating Using Single Organic Additive,” Electrochem. Solid-State Lett., 14, D13, 2011. 11. C. H. Chen, C. W. Lu, S. M. Huang, and W. P. Dow, “Effects of supporting electrolytes on copper electroplating for filling through-hole”, Electrochimica. Acta., 56, 5954, 2011. 12. 胡啟章,電化學原理與方法,五南出版,2002。 13. T. R. Rosebrugh and W. L. Miller, “Mathematical Theory of the Change of Concentration at the Electrode, Brought about by Diffusion and by Chemical Reaction”, J. Phys. Chem., 14, 816, 1910. 14. J. J. Sun, K. Kondo, T, Okamura, S. Oh, M. Tomisaka, H. Yonemura, M. Hoshion, and K. Takahashi, “High-Aspect-Ratio Copper Via Filling Used for Three Dimensional Chip Stacking”, J. Electrochem. Soc., 150, 355, 2003. 15. K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking”, J. Electrochem. Soc., 152, H173, 2000. 16. N. V. Mandich, “Pulse and Pulse-Reverse electroplating”, Metal Finish., 98, 374, 2000. 17. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip”, IBM J. Res. Dev. 42, 567, 1998. 18. P. M. Vereecken, R. A. Binstead, H. Deligianni, and P. C. Andricacos, ”The Chemistry of Additives in Damascene Copper Plating”, IBM J. Res. Dev., 49, 3, 2005. 19. M. Yokoi, S. Konishi, and T. Hayashi, “Adsorption Behavior of Polyoxoyethyleneglycole on the Copper Surface in an Acid Copper-Sulfate Bath,” Denki Kagaku, 52, 218, 1984. 20. A. J. Bard and L. R. Faulkner, “Electrochemical Methodes Fundamentals and Applications”, John-Worly & Sons Inc., New York, USA, 2001. 21. M. Georgiadou, D. Veyret, R. L. Sani, and R. C. Alkire, “Simulation of Shape Evolution during Electrodeposition of Copper in the Presence of Additive”, J. Electrochem. Soc., 148, C54, 2001. 22. J. W. Gallawaya and A. C. West, “The effect of acid on superconformal filling in 100 nm trenches,” J. Vac. Sci. Technol. B, 27, 2200, 2009. 23. Z. Nagy, J. P. blaudezu, N. C. HUNG, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc., 142, L87, 1995. 24. D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, ”Copper Ion Reduction Catalyzed by Chloride Ions”, J. Electroanal. Chem., 532, 353, 2002. 25. W. P. Dow and C. W. Liu, “Evaluating the Filling Performance of a Copper Plating Formila Using a Simple Galvanostat Method”, J. Electrochem. Soc., 153, L190, 2006. 26. W. P. Dow, M. Y. Yen, C. W. Liu, and C. C. Huang, “Enhancement of filling performance of a copper plating formula at low chloride concectration”, Electrochim. Acta., 53, 3610, 2008. 27. M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthylene glycol on the Copper Surface in an Acid Copper Sulphate Bath”, Denki Kagaku., 52, 218, 1984. 28. J. J. KeIly and A. C. Wesr, “Copper Deposition in the Presence of Polyethylene Glycol”, J. Electrochem. Soc., 145, 3472, 1998. 29. Z. V. Feng and A. A. Gewirth, “Inhibition Due to the Interation of polyethylene Glycol, Chloride, and Copper in plating baths:A Surface Enhanced Raman Study”, J. Phys. Chem. B, 107, 9415, 2003. 30. W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating”, J. Electrochem. Soc., 152, C769, 2005. 31. S. C. Chang, J. M. Shieha, K. C. Lin, and B. T. Dai, “Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers”, J. Vac. Sci. Technol. B, 20, C1311, 2002. 32. N. Zukauskaite and A. Malinauskas, “Electroctatlysis by a Brightener in Copper Electrodeposition”, Sov. Electrochem., 24, 2564, 1989. 33. J. P. Healy and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartⅡ. The Instability of 4,5-Dithiaoctane-1,8-Disulphonic Acid in the Bath on Open Circuit”, J. Electroanal. Chem., 338, 167,1992. 34. E. E. Farndon, F. C. Walsh, and S. A. Campbell, “Effect of Thiourea Benzotriazole and 4,5-Dithiaoctane-1,8-Disulphonic Acid on the Kinetics of Copper Deposition form Dilute Acid Sulphate Solutions”, J. Appl. Electrochem., 25, 574, 1995. 35. A. Frank and A. J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries”, J. Electrochem. Soc., 150, C244, 2003. 36. E. Mattsson and J. O. M. Bockris, “Galvanostic Studiew of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System”, Trans. Farady Soc., 55, C1586, 1959. 37. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition”, J. Electrochem. Soc., 152, C77, 2005. 38. W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide”, J. Electrochem. Soc., 156, D155, 2009. 39. H. L. Tu, P. Y. Yen, H. L. Wu, S. Chen, W. Vogel, S. L. Yau, and W. P. Dow, “In Situ STM of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) Electrode and Its Effect on the Electrodeposition of Copper”, J. Electrochem. Soc., 157, D206, 2010. 40. G. K. Gomma, “Effect of azole compounds on corrosion of copper in acid medium”, Mater. Chem. Phys., 56, C27, 1998. 41. S. K. Kim, D. Josell, and T. P. Moffat, “Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling”, J. Electrochem. Soc., 153, C826, 2006. 42. J. J. Kelly and A. C. West, “Leveling of 200 nm Features by Organic Additives”, Electrochem. Solid-State Lett., 2, C561, 1999. 43. P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc., 148, C492, 2001. 44. K. Kondo, N. Yamakawa, Z. Tanaka, and K.Hayashi, “Copper damascene electrodeposition and additives”, J. Electrochem. Soc., 559, C137, 2003. 45. W. P. Dow, H. S. Huang, M. Y. Yen, and H. C.Huang, “Influence of Convection Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating”, J. Electrochem. Soc., 152, C425, 2005. 46. Benon H. J. Bielski, Grace G. Shiue, and S. Baiuk, “Reduction of Nitro Blue Tetrazolium by CO2- and O2- Radicals”, J. Phys. Chem., 84, 830, 1980. 47. K. Umemoto and N. Okamura, “Reaction of Hydroxide Ion with Electron Acceptors in Dimethyl Sulfoxide”, Bull. Chem. Soc. Jpn., 59, 3047, 1986. 48. K. Umemoto, “Electrochemical Studies of the Reduction Mechanism of Tetrazolium Salts and Formazans”, Bull. Chem. Soc. Jpn., 62, 3783, 1989. 49. P. Rapta, V. Brezova, M. Ceppan, M. Melnik, D. Bustin, and A. Stasko, “Radical Intermediates in the Redox Reactions of Tetrazolium Salts in Aprotic Solvents”, Free Rad. Res., 20, 71, 1994. 50. T. Oritani, N. Fukuhara, T. Okajima, F. Kitamura, and T. Ohsaka, “Electrochemical and Spectroscopic Studies on Electron-Transfer Reaction between Novel Water-Soluble Tetrazolium Salts and a Superoxide Ion”, Inorg. Chim. Acta., 357, 436, 2004. 51. K. Umemoto, “Reduction Mechanism of 2,3,5-Triphenyltetrazolium Chloride and 1,3,5-Triphenylformazan”, Bull. Chem. Soc. Jpn., 58, 2051, 1985. 52. S. Deng, X. Li, and H. Fu, “Nitrotetrazolium Blue Chloride as a Novel Corrosion Inhibitor of Steel in Sulfuric Acid Solution”, Corros. Sci., 52, 3840, 2010. 53. H. Teacan and E. Uzluk, “Electrochemical Studies of Bis [1-substituted (-NO2, -COOH, -Cl, -Br)phenyl-3,5-diphenylformazanato] nickel(II) Complexes”, Dyes Pigment., 77, 635, 2008. 54. M. Ishiyama, K. Sasamoto, M. Shiga, Y. Ohkura, and K. Ueno, “Novel Disulfonated Tetrazolium Salt that can be Reduced to a Water-Soluble Formazan and its Application to the Assay of Lactate Dehydrogenase”, Analyst, 120, 113, 1995. 55. G. Gokce, Z. Durmus, H. Tezcan, E. Kilic, and H. Yilmaz, “Electrochemical Investigation of 1,3,5-Triphenylformazan and its Nitro Derivatives in Dimethyl Sulfoxide”, Anal. Sci., 21, 685, 2005. 56. H. Tezcan, H. Şenoz, and N. Tokay “Spectral and Electrochemical behavior of 1-[(NO2, COOH)-Substituted Phenyl]-3,5-Diphenylformazans”, Monatsh Chem., 143, 579, 2012. 57. 汪建民,材料分析,第三版,第五章,中國材料科學學會,2004。 58. N. T. M. Hai, S. Furukawa, T. Vosch, S. D. Feyter, P. Broekmannac, and K. Wandelt, “Electrochemical Reactions at a Porphyrin-Copper Interface”, Phys. Chem. Chem. Phys., 11, 5422, 2009. 59. N. T. M. Hai, K. Wandelt, and P. Broekmann, “Stable Anion-Cation Layers on Cu(111) under Reactive Conditions”, J. Phys. Chem. C., 112, 10176, 2008.en_US
dc.description.abstract  在現代人的生活裡,人們所使用的電子產品要求輕薄短小、多功能、傳訊快速,為了達到這個目標,電子元件線寬距離縮小與高密度互聯(High Density Interconnection, HDI)的技術蓬勃發展。晶片封裝技術也將從二維空間連結轉向三維立體堆疊技術邁進。然而在電鍍通孔方面,因為要求體積小,作為訊息傳遞通道的孔洞也隨之細小,深寬比增加,使得電鍍之電力線在孔中與孔口處分布不均,增加了超級填孔(Super-filling)的困難度。為此,許多人在鍍液中添加了許多化學添加劑,但是越多的添加劑卻也使電鍍時的機制變得更加複雜。   眾多添加劑中,歸類為平整劑的為含有四級銨(N+)的有機雜環類化合物(Azole Compound),此添加劑可以阻止銅離子在電力線分布密集的的孔口處快速沉積;而有機硫化物添加劑作為加速劑又稱為光澤劑,能使銅離子快速沉積;此外,鍍液中常外加酸做為支撐性電解質,用來減少電鍍時產生高電阻現象,避免陰極產生氫氣的副反應;而氯離子則扮演鍍液中觸媒的角色。 在本實驗裡,吾人先是使用平整劑、氯離子以及調整酸,用簡單的組合,以蝴蝶填孔模式來達成填充通孔電鍍;在過去經驗裡指出,只選用此三種添加劑時,若是在一個無酸的系統中進行,雖可達super-filling,但會使沉積的銅有裂痕存在;若是在常用的0.54M硫酸系統中,銅結構雖改善,但鍍液中會有沉澱物產生;本實驗利用有機酸一併解決了銅裂痕以及鍍液沉澱的問題,使用單一添加劑,便可達到通孔電鍍銅填鍍。   在另一方面,本實驗也利用電路板預浸有機硫化物的手法,搭配平整劑與氯離子,得到一種新穎的通孔填孔機制,銅離子會先沉積於通孔的正中央,但有別於蝴蝶填充機制,孔內的沉積銅不是像一隻展翅的蝴蝶,而是如同一方塊塞在孔中央,且板面及接近孔口部分不會有銅沉積,填鍍完成後也不會留有V型凹陷在孔口部分,形成面銅極薄的平台式填孔,命名為H-型填充技術。zh_TW
dc.description.abstractIn modern life, people are using electronic products that are light, thin, short, small, multifunctional and communication-rapid. To achieve this goal, electronic devices that have narrow line widths and high density interconnect (HDI) are being vigorously developed. IC chip packaging will benefit from two-dimensional connection turning towards three-dimensional stacking technology. However, the volume shrinkage in electronic devices results in a high aspect of conducting through-holes that are used as the message channels. The high aspect ratio through hole renders current density distribution in the hole and at the hole mouth to be not uniform during copper plating, which increases difficulty in copper superfilling of through holes. For this reason, many people added chemical additives in the copper plating solution, but the more additives in the plating solution, the more complicated mechanism in the copper plating. Regarding plating additives, leveler usually is the organic heterocyclic compound (Azole Compound) that has a quaternary ammonium (R4N+). Leveler can prevent copper ions from fast reduction and deposition at the hole mouth where the current density distribution is high; the organosulfide additives, also known as accelerators and referred to as brighteners, enable rapid copper deposition. In addition, acids are often added as supporting electrolytes to reduce the resistance of the plating solution and to avoid a side reaction of hydrogen generation at the cathode; the chloride ions play a catalytic role in the copper plating bath. In this work, I first used leveler and chloride ion and adjusted acid concentration with a simple formulation to fill the through hole in the butterfly filling mode. According to past experience, only three additives can perform copper superfilling of a through hole in the absence of acid, but there are cracks in the copper deposition. If 0.54M sulfuric acid is present in the plating solution, then the deposited copper structure is improved but precipitate is also produced in the plating solution. In this work, organic acids were employed solve these problems, copper cracks and plating solution precipitation. A single additive combining with organic acid can fill up the through-hole. On the other hand, the PCB sample was put in a pre-dip bath containing an organosulfide and plated in a plating bath containing leveler and chloride ions to obtain a novel plating mechanism for filling the through-hole. Copper was preferentially deposited at the center of the through hole, but it is different from the butterfly filling mode. The copper deposition profile is not like butterfly wings but a plug stuffed in the center of the hole. The plate surface and the hole mouth portion did not have copper deposition. After copper filling, no V-shaped recess remained on the hole opening portion, forming a very thin surface copper layer on the PCB sample. This is referred to as H-type filling technique.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 ix 第1章、緒論 1 第1.1.節 前言 1 第1.2.節 研究動機目的 3 第2章、文獻回顧與電化學理論 5 第2.1.節 銅製程技術 5 2.1.1. 大馬士革雙鑲嵌技術(Dual-damscence) 5 2.1.2. 增層製程技術(Build-up Process) 9 2.1.3. 通孔電鍍製程 10 第2.2.節 電化學原理 13 2.2.1. 電化學分析分法 13 2.2.2. 極化(Polarization)與過電壓(Overpotential) 14 2.2.3. 電子轉移與質傳控制 15 第2.3.節 電鍍方式 16 2.3.1. 直流電電鍍(Direct Current) 16 2.3.2. 脈衝式及反脈衝式電鍍(Pulse-Reverse Type Current) 16 第2.4.節 電鍍添加劑 18 2.4.1. 無機添加劑 18 2.4.2. 有機添加劑 20 第3章、實驗藥品與實驗裝置、步驟 33 第3.1.節 實驗藥品 33 第3.2.節 實驗裝置 34 第3.3.節 實驗步驟 40 第4章、結果討論 43 第4.1.節 酸對有機添加劑效應 43 4.1.1. 酸效應之通孔電鍍 44 4.1.2. 酸效應之SEM 50 4.1.3. 酸效應之電化學分析 51 4.1.3. 酸效應之UV分析 58 4.1.4. 酸效應之推論機制 61 第4.2.節 有機添加劑與預浸Additive A 65 4.2.1. 預浸 Additive A電鍍實驗 65 4.2.2. 預浸Additive A之分析 75 第5章、結論 82 第5.1.節 酸對有機添加劑效應 82 第5.2.節 有機添加劑與預浸Additive A 83 第6章 未來研究發展方向 84 第6.1.節 酸對有機添加劑效應 84 第6.2.節 有機添加劑與預浸Additive A 85 第7章、參考文獻 86zh_TW
dc.subjectThrough-hole fillingen_US
dc.subjectAcid effecten_US
dc.subjectButterfly technologyen_US
dc.subjectElectroplating Additivesen_US
dc.subjectH-type TH fillingen_US
dc.titleFormula Development for Through-Hole Filling by Copper Electroplatingen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.