Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3213
標題: 奈米氧化鎳-石墨烯於超電容之應用與研究
Nano Nickel Oxides-Graphene Sheet in Supercapacitor Applications
作者: 高紫雯
Kao, Tsu-Wen
關鍵字: 氧化鎳;Nickel oxide;石墨烯;電化學電容器;Graphene;Electrochemical capacitor;Nanoparticle
出版社: 化學工程學系所
引用: 參考文獻 1. C. H. Yang, H. L. Chen, C. P. Chen, S. H. Liao, H. A. Hsiao, Y. Y. Chuang, H. S. Hsu, T. L. Wang, Y. T. Shieh, L. Y. Lin and Y. C. Tsai, J. Electroanal. Chem. 2009, 631, 43. 2. 黃惠良,“2010年上海世博會中國館彩色太陽能系統之興建暨其對未來光伏產業之影響”,2010年6月。 3. C. H. Chiang and C. G. Wu, Chem. Commun. 2010, 46, 2763. 4. 劉力維,李柏亨與顏君楊,“宜蘭清水地熱-能源技術產官學合作成功案例”,經濟部能源局能源報導,頁25,2011年3月。 5. 張彥文與蔡鴻謀,”離岸式風力發電-海上風神威力再起”,Industrial Technology,2010年10月。 6. T. J. Chang, Y. T. Wu, C. R. Chu and C. M. Liao, Renew. Energ. 2003, 28, 851. 7. 陳斌魁、黃欣媛、陳唯泰與陳清山,“澎湖風力發電未來所面臨併網問題及建議對策”,能源季刊第37卷第2期,頁158,2007年4月。 8. 楊秉晃、張憲銘與廖重賓,”新型葉綠素太陽能電池”,台灣科技光電研討會,IO014,2007年。 9. 盧文章、楊淑梅、陳漢炯與陳仁宗,”國內擴大料源作為生物燃料料源的可行性分析”,No. 06-3-93 -0768-01,工業技術研究院,新竹,2004年。 10. 陳俊廷、吳季芳與張嘉修,”以光合菌轉化有機質為氫氣能源-光源、碳源與氮源對紫色不含硫菌光醱酵產氫之影響”,化工技術月刊,147 ,頁169,2005年。 11. Li, Q. L.S. Wang, B. Y. Hu, C. Yang, L. Zhou and L. Zhang, Materials Letters 2007, 61, 1615. 12. Xin, X. S., Z. Lu, B.B. Zhou, X.Q. Huang, R.B. Zhu, X.Q. Sha, Y. H. Zhang and W. H. Su, J. Alloy Compd. 2006, 427, 251. 13. Tokeer Ahmad, Kandalam V.Ramanujachary, Samuel E. Lofland, Ashok K.Ganguli, Solid State Sci 2006, 8, 425. 14. Wang Y. and Ke J., Material Research Bulletin 1996, 31, 55. 15. A. K. Geim and K. S. Novoselov, Nat. Mat. 2007, 6, 183. 16. J. C. Meyer, A. K. Geim, M. I. Katsnelson and K. S. Novoselov, Nature 2007, 466, 60. 17. j Hass, W. A. de Heer and E. H.Conrad, J. Phys: Condens. Matter 2008, 20, 323202. 18. W. A. de Heer, C. Berger, X. Wu. P. N. First, E. H. Conrad, X. Li. T. Li. M. Sprinkle,J. Hass. M. L. Sadowski. M. Potemski and G. Martinez, Solid State Commun. 2007, 143, 92. 19. C. Berger, Z. Song, X. Li. X. Wu. N. Brown. C. Naud, D. Mayou, T. Li., J. Hass,A. N. Marchenkov, E. H. Conral, P. N. First, and W. A.de Heer, Science 2006, 312, 1191. 20. X. Li. G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H.Dai, Nature Naotech 2008, 3, 538. 21. G. Eda, G. Fanchini and M. Chhowalla, Nature Nanotech 2008, 3, 270. 22. 胡啟章編著,電化學的原理與方法 (2002). 23. J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 1995, 142, 2699. 24. J.P. Zheng, T.R. Jow, J. Electrochem. Soc. 1995, 142, L6. 25. S. Sarangapani, B.V. Tilak, C.-P. Chen, J. Electrochem. Soc. 1996, 143, 3791. 26. D. Qu, and H. Shi, J. Power Sources 1998, 74, 99. 27. M. Nakamura, M. Nakanishi and K. Yamamoto, J. Power Sources 1996, 60, 225. 28. A. Nishino, J. Power Sources 1996, 60, 137. 29. K. R. Prasad and N. Munichandraiah, J. Electrochem. Soc. 2002, 149, A1393. 30. C. C. Hu and Y. H. Huang, J. Electrochem. Soc. 1999, 146, 2465. 31. J. I. Hong, I. H. Yeo and W. K. Paik, J. Electrochem. Soc. 2001, 148, A156. 32. V. Srinivasan and J. W. Weidner, J. Electrochem. Soc. 1997, 144, L210. 33. V. Srinivasan and J. W. Weidner, J. Electrochem. Soc. 2000, 147, 880. 34. A. T. Chidembo, K. I. Ozoemena, B. O. Agboola, V. Gupta, G. G. Wildgoose and R. G. Compton, Energy Environ. Sci. 2010, 3, 228. 35. P. Lin, Q. J. She, B. L. Hong, X. J. Liu, Y. N. Shi, Z. Shi, M. S. Zheng, and Q. F. Donga, J. Electrochem. Soc. 2010, 157, A818. 36. K. W. Nam, K. H. Kim, E. S. Lee, W. S. Yoon, X. Q. Yang and K. B. Kim, J. Power Sources 2008, 182, 642. 37. G. H. Yuan, F. P. Wang and Z. H. Jiang, Journal of Harbin Indstitute of Technology 2010, 42, 254. 38. K. Lota, A. Sierczynska and G. Lota, Inter. J. Electrochem. 2011, 321473, 6pp. 39. C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin and T. Y. Tseng, J. Electrochem. Soc. 2005, 152, A716. 40. K. X. He, Q. F. Wu, X. G. Zhang and X. L. Wang, J. Electrochem. Soc. 2006, 153, A1568. 41. J. W. Lang, L. B. Kong, M. Liu, Y. C. Luo and L. Kang, J. Electrochem. Soc. 2010, 157, A1341. 42. Q. Liua, M. H. Nayfehb and S. T. Yaua, J. Power Sources, 195, 7480, 2010. 43. A. B. Yuan, X. L. Wang, Y. Q. Wang and J. Hu, Energ. Convers. Manage. 2010, 51, 2588. 44. J. F. Zang and X. D. Li, J. Mater. Chem. 2011, 21, 10965. 45. S. Bose, N. H. Kim, T. Kuila, K. T. Lau and J. H. Lee, Nanotechnology 2011, 22, 295202,. 46. J. Xu, L. Gao, J. Y. Cao, W. C. Wang and Z. D. Chen, J Solid State Electrochem 2011, 15, 2005. 47. S. G. Hwang, S. H. Ryu, S. R. Yun, J. M. Ko, K. M. Kim and K. S. Ryu, Mater. Chem. Phys. 2011, 130, 507.
摘要: 
摘要
本實驗利用化學還原法中的多元醇還原法,利用氧化鎳金屬分散於石墨烯來合成性質優越的陽極材料,首先以Hummers method來製備氧化石墨烯(Graphene oxide;GO),利用不同金屬的濃度合成,以多元醇還原法使鎳粒子均勻的分散於石墨烯上,以TEM觀察金屬粒徑及分散情況,以XRD鑑定材料晶相及TGA檢測鎳金屬在石墨烯上的特徵,並以電化學循環伏安法(CV)其充放電行為表現選擇出較佳的金屬濃度比例,再以不同溫度的氧化下的電化學循環伏安法檢測氧化還原的比電容大小來探討溫度對氧化的影響。
本實驗90%奈米鎳-石墨烯,經過最佳溫度250℃鍛燒1hr氧化生成奈米氧化鎳-石墨烯,氧化鎳成份的增加,提供了良好的穩定性,及充放電效率,比電容值可以達到321Fg-1

Abstract
In the study, nickel oxide is dispersed well on the graphene to fabricate a good anode electrocatalyst material.First of all, graphene oxide was prepared by the Hummer’s method.Then nickel acetate terahydate using as a precursor was introduced to disperse nickel particle on the graphene by the polyol method.Finally, the prepared sample undergo a heat treatment to obataind a nano NiO-graphene. The different concentration of precusor, heating temperature, and heating time were investigated. The prepared NiO-graphene was characterized by TEM,XRD,and TGA. The efficiency and the stability of electric capacity was determind by the electro chemical method with cyclic voltammetry(CV).
The best electrochemical performance was observed when the used concentration of precursor was 90% and 250℃ heat treated for 1hr.
The specific capacitance can reach 321Fg-1


Keyword:Nickel oxide、Graphene、Electrochemical capacitor、Nanoparticle
URI: http://hdl.handle.net/11455/3213
其他識別: U0005-0607201216324500
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.