Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3216
標題: 尺寸安定性陽極應用於矽穿孔填孔電鍍銅之研究
Cu Electroplating for Through Silicon Vias Filling Using a Dimensionally Stable Anode
作者: 熊婉雲
Hsiung, Wan-Yun
關鍵字: 矽穿孔;Through Silicon Via;不溶性陽極;電鍍添加劑;Dimensionally Stable Anode;Electroplating Additives
出版社: 化學工程學系所
引用: 1. P. Dixit, L. Xu, J. Miao, J. H. L. Pang, and R. Preisser, “Mechanical and Microstructural Characterization of High Aspect Ratio Through-wafer Electroplated Copper Interconnects”, J. Mircromech. Microeng., 17, 1749, 2007. 2. 楊建軍,林世民,“不溶性陽極在填孔電鍍應用中之功能性”,電路板會刊,第41期,2008。 3. 胡啟章,電化學原理與方法,五南圖書出版股份有限公司,民國96年。 4. H. Xiao, “Introduction of Semiconductor Manufacturing Technology”, Prentice-Hall Inc., New Jersey, 2001. 5. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections”, IBM J. Res. & Dev., 42, 567, 1998. 6. S. L. Burkett, X. Qiao, D. Temple, B. Stoner, and G. McGuire, “Advanced Processing Technique for Through-wafer Interconnects”, J. Vac. Sci. Technol. B., 22, 248, 2004. 7. P. Garrou, C. Bower, and P. Ramm, “Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits”, John Wiley & Sons Inc, Ch1, p4, 2008. 8. R. Beica, P. Siblerud, C. Sharbono, and M. Bernt, “Advanced Metallization for 3D Integration”, IEEE Xpolre, 212, 2008. 9. M. Georgiadou, D. Veyret, R. L. Sani, and R. C. Alkire, “Simulation of Shape Evolution during Electrodeposition of Copper in the Presence of Additive”, J. Electrochem. Soc., 148, C54, 2001. 10. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc., 142, L87, 1995.   11. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition”, J. Electrochem. Soc., 152, C77, 2005. 12. W. P. Dow and C. W. Liu, “Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method”, J. Electrochem. Soc., 153, C190, 2006. 13. G. M. Brown and G. A. Hope, “A SERS Study of SO2- / C1- Ion Adsorption at a Copper Electrode In-situ”, J. Electrochem. Soc., 405, 211, 1996. 14. N. Zukauskaite and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrode in Situ”, Sov. Electrochem., 24, 1564, 1989. 15. J. P. Healy and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath Part II. The Instability of 4, 5- Dithiaoctane-1, 8-Disulphonic Acid in the Bath on Open Circuit”, J. Electroanaly. Chem., 338, 167, 1992. 16. N. Zukauskaite and A. Malinauskas, “Electroctatlysis by a Brightener in Copper Electrodeposition”, Sov. Electrochem., 24, 2564, 1989. 17. J. P. Healy and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartⅡ. The Instability of 4, 5–Dithiaoctane-1, 8 -Disulphonic Acid in the Bath on Open Circuit”, J. Electroanal. Chem., 338, 167, 1992. 18. E. E. Farndon, F. C. Walsh, and S. A. Campbell, “Effect of Thiourea, Benzotriazole and 4,5-Dithiaoctane-1,8-Disulphonic Acid on the Kinetics of Copper Deposition form Dilute Acid Sulphate Solutions”, J. Appl. Electrochem., 25, 574. 1995. 19. A. Frank and A. J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries”, J. Electrochem. Soc., 150, C244, 2003. 20. E. Mattsson and J. O. M. Bockris, “Galvanostatic Studies of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System”, Trans. Faraday Soc., 55, 1586, 1959.   21. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition - II. Studies Using EPR and Galvanostatic Measurements”, J. Electrochem. Soc., 152, C77, 2005. 22. W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide”, J. Electrochem. Soc., 156, D155, 2009. 23. H. L. Tu, P. Y. Yen, H. L. Wu, S. Chen, W. Vogel, S. L. Yau, and W. P. Dow, “In Situ STM of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) Electrode and Its Effect on the Electrodeposition of Copper”, J. Electrochem. Soc., 157, D206, 2010. 24. M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthyleneglycol on the Copper Surface in an Acid Copper Sulphate Bath”, Denki Kagaku., 52, 218, 1984. 25. J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol Ⅰ. Quartz Crystal Microbalance Study”, J. Electrochem. Soc., 145, 3472, 1998. 26. Z. V. Feng and A. A. Gewirth, “Inhibition due to the Interation of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface Enhanced Raman Study”, J. Phys. Chemistry B., 107, 9415, 2003. 27. B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, T. L. Xiang, and G. N Chen, “In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode”, J. Electrochem. Soc., 154, D516, 2007. 28. S. C. Chang, J. M. Shieh, K. C. Lin, B. T. Dai, T. C. Wang, C. F. Chen, M. S. Feng, Y. H. Li, and C. P. Lu, “Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers”, J. Vac. Sci. Technol. B., 20, C1311, 2002. 29. J. J. Kelly and A. C. West, “Leveling of 200nm Features by Organic Additives”, Electrochem. Solid-State Lett., 2, C561, 1999. 30. P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc., 148, C492, 2001. 31. K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, “Copper Damascene Electrodeposition and Additives”, J. Electrochem. Soc., 559, C137, 2003. 32. 王美齡,“尺寸安定性陽極於填孔電鍍之應用”,國立中興大學化學工程學系碩士論文,2011。 33. 劉軍梅,郭振英,王海林,“金屬氧化物塗層鈦陽極的制備方法”,中國鋼研科技集團公司,2012。 34. 黃運濤,彭喬,“鈦基金屬氧化物陽極的研究發展”,金屬腐蝕控制,2006。 35. S. Fierro and C. Comninellis, “Kinetic Study of Formic Acid Oxidation on Ti/IrO2 Electrodes Prepared Using the Spin Coating Deposition Technique”, Electrochim. Acta, 55, 7067, 2010. 36. 汪建民,“材料分析”,中國材料科學學會,2001。 37. 羅吉宗,“薄膜科技與應用”,全華圖書,2005。 38. 張立,“微結構分析與電子顯微鏡學”,材料與社會雜誌,第37期,1990。 39. 陳力俊,“材料電子顯微鏡學”,國科會精儀中心,1994。 40. S. K. Cho, S. K. Kim, and J. J. Kim, “Superconformal Cu Electrodeposition Using DPS a Substitutive Accelerator for Bis (3-sulfopropyl) Disulfide”, J. Electrochem. Soc., 5, C330, 2005. 41. M. J. Willey, J. Reid, and A. C. West, “Adsorption Kinetics of Polyvinylpyrrolidone during Copper Electrodeposition”, Electrochem. Solid-State Lett., 10, D38, 2007. 42. Y. D. Chiu, W. P. Dow, S. M. Huang, S. L. Yau, and Y. L. Lee, “Sensitivity Enhancement for Quantitative Electrochemical Determination of a Trace Amount of Accelerator in Copper Plating Solutions”, J. Electrochem. Soc., 158, D290, 2011. 43. Y. D. Chiu and W. P. Dow, “Accelerator Screening by Cyclic Voltammetry for Microvia Filling by Copper Electroplating”, J. Electrochem. Soc., 160, 2013. 44. Y. D. Chiu, W. P. Dow, K. Krug, Y. F. Liu, Y. L. Lee, and S. L. Yau, “Adsorption and Desorption of Bis-(3-sulfopropyl) Disulfide during Cu Electrodeposition and Stripping at Au Electrodes”, Langmuir, 2012. 45. A. Mesnage, X. Lefevre, P. Jegou, G. Deniau, and S. Palacin, “Spontaneous Grafting of Diazonium Salts: Chemical Mechanism on Metallic Surfaces”, Langmuir, 28, 2012. 46. J. Denayer, J. Delhalle, and Z. Mekhalif, “Self-Assembly of Amine Terminated Alkylthiol and Alkyldithiol Films on a Polycrystalline Copper Substrate”, J. Electrochem. Soc., 158, 2011.
摘要: 
近年來,隨著電子產品小型化的趨勢,輕薄短小已為電子元件發展之方向,目前主要是以銅製程之技術應用於積體電路與印刷電路板,為了改善傳遞訊號速度,矽穿孔便發展為上下晶片所連接之橋樑,並以超級填孔之方式填充。
傳統工業上常使用可溶性之陽極來進行電鍍銅,但是,可溶性陽極因為自身尺寸不穩定,以致電力線分佈不均勻、鍍膜厚度難以控制的問題產生,不僅造成槽液提早老化,且嚴重影響到產品之信賴度。為改善以上可溶性陽極所帶來的缺失與獲得較佳的電鍍銅層結構,本篇論文將陽極系統更換成尺寸安定性陽極進行研究。
此外,為改善電鍍銅膜沉積結構以及信賴度,吾人利用有機添加劑,像是抑制劑、加速劑、平整劑以及潤濕劑的施打進行實驗。以往,傳統之加速劑以3-芣基丙烷磺酸鈉和聚二硫二丙烷磺酸鈉(SPS)為主,但由於SPS於不溶性陽極系統極易被裂解,導致活性壽命太低,不適用於不溶性陽極系統,因此,本篇論文以一新穎之加速劑ACC,進而取代SPS,此加速劑有著加速性強之優勢,並於不溶性陽極系統中具有良好的填鍍效果,但其填孔過程中產生晶界結構導致信賴度的下降,因此吾人也針對晶界現象提出解決之道。

Nowadays, the contact distance between electronic devices has become much shorter with the trend of electronic product miniaturization. Copper electroplating is used to make interconnects in integrated circuit (IC) manufacturing. To promote transmission speed of signal, through silicon via (TSV), acting as short and direct interconnection between up and down chips, is superfilled by copper electroplating using some kinds of additives.
Soluble anode is usually applied to copper electroplating in a traditional plating bath, but soluble anode has some disadvantages, such as area change with time, which causes the distribution of current non-uniform. This may affect product reliability and stability of the plating bath. Because of these problems, dimensionally stable anode (DSA) is used to avoid the disadvantage of soluble anodes.
In addition, we use some kinds of additives to improve the structure and reliability of electrodeposited film. These organic additives were suppressor, accelerators, leveler and wetting agent. Traditional accelerator, such as Bis(3-Sulfopropyl) Disulfide (SPS), is not appropriate for DSA system because of easy breakdown, such that we must develop a novel accelerator, ACC, for DSA system. It has a longer lifetime for acceleration on copper deposition than SPS, and its acceleration performance is also better than SPS. ACC can exhibit excellent filling performance in the DSA plating system. But there is the structure defect in the filled copper and we have found ways to solve the structure defect of filled copper.
URI: http://hdl.handle.net/11455/3216
其他識別: U0005-1807201314053000
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.