Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorHou-Chien Changen_US
dc.contributor.authorCheng, Yi-Chengen_US
dc.identifier.citation[1] Young, B., Heath, J. W. (2000). Wheather’s functional histology: A Text and Colour Atlas, 157-171. [2] Degim, I. T. (2006). New tools and approaches for predicting skin permeability. International Journal of Pharmaceutics 170, 129-133. [3] Menon, G. K. (2002). New insights into skin structure: scratching the surface. Advanced Drug Delivery Reviews 54, S3-S17. [4] Fuchs, E., and Raghavan, S. (2002). Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3, 199-209 [5] Heather, A. E. B. (2005). Transdermal Drug Delivery: Penetration Enhancement Techniques. Current Drug Delivery 2, 23-33. [6] Franz, T. J., Lehman, P. A. (2000). The skin as a barrier: structure and function, CRC Press LLC, 15-31. [7] Dressler WE. (1999). Hair dye absorption. In: Bronaugh RL & Maibach HI eds.Percutaneous absorption: drugs-cosmetics-mechanisms-methodology, 3rd ed. New York, Marcel Dekker, pp 685-716. [8] SCCNFP. (2003). Basic criteria for the in vitro assessment of dermal absorption of cosmetic ingredients, updated October 2003, adopted by the SCCNFP during the 25th plenary meeting of 20 October 2003. Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers, pp 1-9 (SCCNFP/0750/03). [9] Steiling W, Kreutz J & Hofer H. (2001). Percutaneous penetration/dermal absorption of hair dyes in vitro. Toxicol In Vitro, 15: 565-570. [10] Cross SE, Roberts MS. (2005). Effects of dermal blood flow, lymphatics and binding as determinants of topical absorption, clearance and distribution. In: Riviere JE ed. Dermal absorption models in toxicology and pharmacology. Boca Raton, FL, Taylor & Francis, pp 249–279. [11] Bouwstra, J. A., Honeywell-Nguyen, P. L., Gooris, G. S., and Ponec, M. (2003). Structure of the skin barrier and its modulation by vesicular formulations. Progress in Lipid Research 42, 1-36. [12] L. Machet, A. Boucaud, (2002). Phonophoresis: efficiency, mechanism and skin tolerance, Int. J. Pharm. 243, 1-15. [13] Kim, C. -j. (2000). Controlled release dosage from design (Informa Health Care). [14] Kwon, Y. (2002). handbook of essential pharmacokinetics, pharmacodynamics and drug metabolism for industrial scientists[electronic resource](New York, Kluwer Academic Pubkisher). [15] Naik, A., kalia, Y. N., and Guy , R. H. (2000). Transdermal drug delivery: overcoming the skin’s barrier function. Pharmaceutical Science & Technology Today 3, 318-326. [16] Thong, H. Y., Zhai, H., and Maibach, H. I. (2007). Percutaneous Penetration Enhancers: An Overview. Skin Pharmacology and Physiology 20, 272-282. [17] Thomas, B. J., and Finnin, B. C. (2004). The transdermal revolution. Drug Discovery Today 9, 697-703. [18] Pliquett, U. Gusbeth, C. Nuccitelli, R. (2008). A propagating heat wave model of skin electroporation, J. Theor. Biol. 251 195-201. [19] Bolzinger, M. -A., S. Briancon, et al. (2012). "Penetration of drugs through skin, a complex rate-controlling membrane." Current Opinion in Colloid and Interface Science 17(3): 156-165. [20] Kang, M. J. Eum, J. Y. Jeong, M. S. Choi, S. E. Park, S. H. Cho, H. I. Cho, C. S. Seo, Lee, M. W. Choi, Y. W. (2010). Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice. Parm. Bull. 33, 100-106. [21] Scheuplein, R. J. (1967). Mechanism of Percutaneous Absorption. The Journal of Investigative Dermatology 48, 267-276. [22] Barry, B.W. (2001). Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences 14, 101-114. [23] Frum, Y., Bonner, M. C., Eccleston, G. M., and Meidan, V. M. (2007). The nfluence of drug partition coefficient on follicular penetration: In vitro human skin studies. European Journal of Pharmaceutical Sciences 30, 280-287. [24] Trommer, H. Neubert, R.H. (2006). Overcoming the stratum Corneum: the modulation of skin penetration. A review, Skin Pharmacology and Physiology 19, 106-121. [25] Downing, D. (1992). Lipid and protein structures in the permeability barrier of mammalian epidermis. J Lipid Res 33, 301-313. [26] Barry, B. W. (1983). Dermatologic Formulations, 1st, New York: Marcel Dekker, 127-129. [27] Welty, J. R., Wicks, C. E., Wilson, R. E., Rorror, G. (2001). Fundamentals of Momentum, heat, and mass transfer, 4th Ed., John Wiley & Sons, New York. [28] McCarley, K. D., Bunge, A. L. (2001). Pharmacokinetic models of dermal absorption, J. Pharm. Sci. 90, 1699-1719. [29] Mitragotri, S., Anissimov, Y.G., Bunge, A. L., Frasch, H. F., Guy, R. H., Hadgraft, J., Kasting, G. B., Lane, M. E., Roberts, M. S. (2011). Mathematical models of skin permeability: an overview, Int. J. Pharm. 418, 115-129. [30] Anissimov Y. G., Roberts M. S. (1999). Diffusion modeling of percutaneous absorption kinetics. 1. Effects of flow rate, receptor sampling rate, and viable epidermal resistance for a constant donor concentration. Int. J. Pharm. 88, 1201-1209. [31] Siddiqui, O., Roverts, M. S., Polack, A. E. (1989). Percutaneous absorption of steroids relative contributions of epidermal penetration and dermal clearance. J. Pharmacokinet. Biopharm. 17, 405-424. [32] Moser, K., K. Kriwet, et al. (2001). "Passive skin penetration enhancement and its quantification in vitro." European Journal of Pharmaceutics and Biopharmaceutics 52(2): 103-112. [33] Michaels, A. S., S. K. Chandrasekaran, et al. (1975). "Drug permeation through human skin: Theory and invitro experimental measurement." AIChE Journal 21(5): 985-996. [34] Wang, T.-F., G. B. Kasting, et al. (2006). "A multiphase microscopic diffusion model for stratum corneum permeability. I. formulation, solution, and illustrative results for representative compounds." Journal of Pharmaceutical Sciences 95(3): 620-648. [35] Anissimov, Y. G. and M. S. Roberts (2009). "Diffusion modelling of percutaneous absorption kinetics: 4. Effects of a slow equilibration process within stratum corneum on absorption and desorption kinetics." Journal of Pharmaceutical Sciences 98(2): 772-781. [36] Warner, R. R., Y. L. Boissy, et al. (1999). "Water disrupts stratum corneum lipid lamellae: damage is similar to surfactants." J Invest Dermatol 113(6): 960-966. [37] Charalambopoulou, G. C., T. A. Steriotis, et al. (2004). "Structural alterations of fully hydrated human stratum corneum." Physica B: Condensed Matter 350(1–3, Supplement): E603-E606. [38] Van Hal, D. A., E. Jeremiasse, et al. (1996). "Structure of Fully Hydrated Human Stratum Corneum: A Freeze-Fracture Electron Microscopy Study." J Investig Dermatol 106(1): 89-95. [39] Warner, R. R., K. J. Stone, et al. (2003). "Hydration Disrupts Human Stratum Corneum Ultrastructure." J Investig Dermatol 120(2): 275-284. [40] BERT, J. L., J. M. MATHIESON, et al. (1982). "The exclusion of human serum albumin by human dermal collagenous fibres and within human dermis." Biochem. J 201: 395-403. [41] Bert, J. L., R. H. Pearce, et al. (1986). "Concentration of plasma albumin in its accessible space in postmortem human dermis." Microvascular research 32(2): 211-223. [42] Cussler, E. L. (1997). Diffusion: mass transfer in fluid systems, Cambridge university press. [43] Kretsos, K., M. A. Miller, et al. (2008). "Partitioning, diffusivity and clearance of skin permeants in mammalian dermis." International journal of pharmaceutics 346(1): 64-79. [44] Cooper, E. R. (1974). "Effect of adsorption on membrane diffusion." Journal of Colloid and Interface Science 48(3): 516-517. [45] Kasting, G. B., N. D. Barai, et al. (2003). "Mobility of water in human stratum corneum." Journal of Pharmaceutical Sciences 92(11): 2326-2340. [46] O''neil, P. V. (2011). Advanced engineering mathematics. Cl-Engineering. [47] Buchanan, J. L., & Turner, P. R. (1992). Numerical methods and analysis (Vol. 640). New York: McGraw-Hill. [48] Skeel, R. D., & Berzins, M. (1990). A method for the spatial discretization of parabolic equations in one space variable. SIAM journal on scientific and statistical computing, 11(1), 1-32. [49] 林銘楷. (2004). 人體皮脂對藥物角質層滲透性之影響. 成功大學臨床藥學研究所學位論文, (2004 年), 1-102. [50] Wertz PW, van den Bergh B. (1998). The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 91: 85–96. [51] McAuley, W. J., S. Chavda-Sitaram, et al. (2013). "The effects of esterified solvents on the diffusion of a model compound across human skin: An ATR-FTIR spectroscopic study." International journal of pharmaceutics 447(1–2): 1-6. [52] Naegel, A., Heisig, M., & Wittum, G. (2009). A comparison of two-and three-dimensional models for the simulation of the permeability of human stratum corneum. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 332-338. [53] Xiao, P., & Imhof, R. E. (2012). Two dimensional finite element modelling for dynamic water diffusion through stratum corneum. International Journal of Pharmaceutics, 435(1), 88-92.en_US
dc.description.abstract在藥物經皮輸送系統(Transdermal Drug Delivery System,TDDS)中,建立數學模型,並且擬合,可以分析藥物傳遞在皮膚內的路徑和評估藥物滲透或促滲劑的情況,扮演著重要的角色。在以往的經皮滲透實驗,不管是以人類皮膚或者動物皮膚作為滲透途徑,都可以看到其滲透的情形在長期之下,累積滲透量有明顯地減緩趨勢。以往文獻中的基本數學模型,因為假設上的理想化,使得數學模型與實驗數據無法完美擬合,僅在前期或尚未出現累積滲透量驟減,才能進行擬合。為了更接近真實情況,本研究認為重要因素是藥物在滲透皮膚時,會因為藥物與皮膚所產生的結合作用,使得藥物殘留在皮膚內,影響滲透效果,因此以改良的三種滲透模型和實驗數據加以擬合,得到擴散係數、結合速率常數、平衡常數、藥物被吸附容量。zh_TW
dc.description.abstractIn Transdermal drug delivery systems (TDDS), it plays an important role what we can create mathematical models, and then curve fitting with data to analyze within the skin drug delivery path and evaluate drug penetration or penetration enhancers situation. In previous percutaneous permeation experiments, whether based on human or animal skin as the skin permeation pathway, you can see the penetration of the situation in the long term under the cumulative permeation amount significantly slow the trend. Previous literature in basic mathematical model, because the assumptions are the ideal condition, making the mathematical model can not be a perfect fit with the experimental data, has not yet appeared only in the early or cumulative permeation plummeted to fit. For a more realistic situation, an important factor what the drug will be generated with the binding of the skin, such drugs residue on the skin in this experiment that the penetration of the skin the drug impact penetration effect. Therefore, to provide the diffusion coefficient, the binding rate constant, the equilibrium constant, the drug of the adsorption capacity by modified the three models and experiment data to fitting.en_US
dc.description.tableofcontents摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 前言 1 第二章 文獻回顧 3 第一節 皮膚的結構 3 第二節 皮膚的種類與來源 6 第三節 皮膚的功能 7 第四節 藥物經皮輸送系統 8 第五節 經皮給藥途徑 10 第六節 藥物經皮滲透行為 14 第七節 藥物在皮膚內的結合作用 22 第八節 數值方法 26 第三章 研究方法 28 第一節 符號說明 28 第二節 皮膚內藥物擴散的計算理論 29 一、 初始條件(Initial Condition) 29 二、 邊界條件(Boundary Condition) 30 第三節 結合作用的機制 30 第四節 無因次化方程式 31 第五節 計算方法 34 一、 解析解(Analytic Solution) 34 二、 數值解(Numerical Solution) 36 第六節 三種結合機制的計算 37 第七節 MATLAB程式語言說明 38 一、 pdepe指令 38 二、 lsqnonlin指令 41 第四章 結果與討論 42 第一節 解析解的計算結果 42 一、 解析解的驗證 42 二、 表觀擴散係數和結合速率常數的影響 44 三、 平衡常數的影響 44 四、 可逆與不可逆的結合機制之比較 46 第二節 數值解的計算結果 49 一、 數值解的準確度 49 二、 第二種結合機制的計算結果 50 三、 鍵結容量與流血速率的關係 53 第五章 研究結果與文獻比較 54 第六章 結論與未來研究方向 59 參考文獻 61 附錄一 無結合機制的數值解(MATLAB程式碼) 67 附錄二 不可逆機制的數值解(MATLAB程式碼) 68 附錄三 不可逆兼具限制結合效應機制的數值解 69 附錄四 可逆機制的數值解(MATLAB程式碼) 70 附錄五 無結合機制的擬合程式碼 71 附錄六 不可逆機制的擬合程式碼 74 附錄七 不可逆兼具限制結合效應機制的擬合 77 附錄八 可逆機制的擬合程式碼 80zh_TW
dc.subjectTransdermal drug delivery systemsen_US
dc.subjectmathematical modelen_US
dc.subjectbinding effecten_US
dc.subjectcurve fittingen_US
dc.subjectunsteady stateen_US
dc.titleTheoretical Modelling of Skin Penetration with Improved Partial Differential Equationsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.