Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3224
DC FieldValueLanguage
dc.contributor竇維平zh_TW
dc.contributor.author邱詠達zh_TW
dc.contributor.authorChiu, Yong-Daen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:31:29Z-
dc.date.available2014-06-06T05:31:29Z-
dc.identifierU0005-0307201314551700en_US
dc.identifier.citation1.Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl, 2009. 48(1): p. 60-103. 2.H. Hagenstrom, M.A. Schneeweiss, D.M. Kolb, Modification of a Au(111) electrode with ethanethiol. 2. Copper electrodeposition. Langmuir, 1999. 15(22): p. 7802-7809. 3.M. Wilms, P. Broekmann, C. Stuhlmann, K. Wandelt, In-situ STM investigation of adsorbate structures on Cu(111) in sulfuric acid electrolyte. Surface Science ,1998. 416(1-2): p. 121-140. 4.P. Broekmann, M. Wilms, M. Kruft, C. Stuhlmann, K. Wandelt, In-situ STM investigation of specific anion adsorption on Cu(111). Journal of Electroanalytical Chemistry, 1999. 467(1–2): p. 307-324. 5.M. Wilms, P. Broekmann, M. Kruft, Z. Park, C. Stuhlmann, K. Wandelt, STM investigation of specific anion adsorption on Cu(111) in sulfuric acid electrolyte. Surface Science, 1998. 402–404(0): p. 83-86. 6.L. Guo, S. Zhang, P. Searson, Growth kinetics of disk-shaped copper islands in electrochemical deposition. Physical Review E, 2009. 79(5). 7.F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic Gold Nanocrystals. Angewandte Chemie International Edition, 2004. 43(28): p. 3673-3677. 8.C.J. Murphy, N.R. Jana, Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials, 2002. 14(1): p. 80-82. 9.S. Chen, Z.L. Wang, J. Ballato, S.H. Foulger, D.L. Carroll, Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. Journal of the American Chemical Society, 2003. 125(52): p. 16186-16187. 10.E. Hao, R.C. Bailey, G.C. Schatz, J.T. Hupp, S. Li, Synthesis and Optical Properties of “Branched” Gold Nanocrystals. Nano Letters, 2004. 4(2): p. 327-330. 11.Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002. 298(5601): p. 2176-2179. 12.B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry, 2005. 11(2): p. 454-63. 13.S.H. Im, Y.T. Lee, B. Wiley, Y. Xia, Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed Engl, 2005. 44(14): p. 2154-7. 14.S. Chen, Z. Fan, D.L. Carroll, Silver Nanodisks:  Synthesis, Characterization, and Self-Assembly. The Journal of Physical Chemistry B, 2002. 106(42): p. 10777-10781. 15.Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, J.M. Zhang, D.Y. Shen, Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires. The Journal of Physical Chemistry B, 2004. 108(34): p. 12877-12881. 16.Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, Synthesis, characterization and self-assembly of silver nanowires. Chemical Physics Letters, 2003. 380(1-2): p. 146-149. 17.Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials, 2002. 14(11): p. 4736-4745. 18.X. Huang, S. Tang, H. Zhang, Z. Zhou, N. Zheng, Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals. Journal of the American Chemical Society, 2009. 131(39): p. 13916-13917. 19.Y. Xiong, J.M. McLellan, Y. Yin, Y. Xia, Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions. Angewandte Chemie, 2007. 119(5): p. 804-808. 20.B. Lim, M. Jiang, J. Tao, P.H.C. Camargo, Y. Zhu, Y. Xia, Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions. Advanced Functional Materials, 2009. 19(2): p. 189-200. 21.N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007. 316(5825): p. 732-5. 22.H. Lee, S.E. Habas, S. Kweskin, D. Butcher, G.A. Somorjai, P. Yang, Morphological Control of Catalytically Active Platinum Nanocrystals. Angewandte Chemie International Edition, 2006. 45(46): p. 7824-7828. 23.R. Narayanan, M.A. El-Sayed, Changing Catalytic Activity during Colloidal Platinum Nanocatalysis Due to Shape Changes:  Electron-Transfer Reaction. Journal of the American Chemical Society, 2004. 126(23): p. 7194-7195. 24.Z. Tang, D. Geng, G. Lu, A simple solution-phase reduction method for the synthesis of shape-controlled platinum nanoparticles. Materials Letters, 2005. 59(12): p. 1567-1570. 25.T. Herricks, J. Chen, Y. Xia, Polyol Synthesis of Platinum Nanoparticles:  Control of Morphology with Sodium Nitrate. Nano Letters, 2004. 4(12): p. 2367-2371. 26.Y. Chang, M.L. Lye, H.C. Zeng, Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires. Langmuir, 2005. 21(9): p. 3746-3748. 27.Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, Y. Qian, Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process. The Journal of Physical Chemistry B, 2003. 107(46): p. 12658-12661. 28.C.M. Liu, L. Guo, H.B. Xu, Z.Y. Wu, J. Weber, Seed-mediated growth and properties of copper nanoparticles, nanoparticle 1D arrays and nanorods. Microelectronic Engineering, 2003. 66(1–4): p. 107-114. 29.Y. Wang, P. Chen, M. Liu, Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology, 2006. 17(24): p. 6000-6006. 30.Y.-F. Huang, H.-S. Shih, C.-W. Lin, P. Xu, D.J. Williams, K.J. Ramos, D.E. Hooks, H.-L. Wang, Morphology Control of Cu Crystals on Modified Conjugated Polymer Surfaces. Crystal Growth & Design, 2012. 12(4): p. 1778-1784. 31.W.-Y. Ko, W.-H. Chen, C.-Y. Cheng, K.-J. Lin, Architectural Growth of Cu Nanoparticles Through Electrodeposition. Nanoscale Research Letters, 2009. 4(12): p. 1481 - 1485. 32.W.-Y. Ko, W.-H. Chen, S.-D. Tzeng, S. Gwo, K.-J. Lin, Synthesis of Pyramidal Copper Nanoparticles on Gold Substrate. Chemistry of Materials, 2006. 18(26): p. 6097-6099. 33.F. Silly, M.R. Castell, Temperature-Dependent Stability of Supported Five-Fold Twinned Copper Nanocrystals. ACS Nano, 2009. 3(4): p. 901-906. 34.L. Guo, P.C. Searson, On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochimica Acta, 2010. 55(13): p. 4086-4091. 35.M.J. Siegfried, K.S. Choi, Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution. Advanced Materials, 2004. 16(19): p. 1743-1746. 36.D H. Dong, Y. Wang, F. Tao, L. Wang, Electrochemical Fabrication of Shape-Controlled Copper Hierarchical Structures Assisted by Surfactants. Journal of Nanomaterials, 2012. 2012: p. 1-6. 37.N.S. Pesika, A. Radisic, K.J. Stebe, P.C. Searson, Fabrication of Complex Architectures Using Electrodeposition into Patterned Self-Assembled Monolayers. Nano Letters, 2006. 6(5): p. 1023-1026. 38.Q. Xu, I. Tonks, M.J. Fuerstman, J.C. Love, G.M. Whitesides, Fabrication of Free-Standing Metallic Pyramidal Shells. Nano Letters, 2004. 4(12): p. 2509-2511. 39.J. Henzie, E.-S. Kwak, T.W. Odom, Mesoscale Metallic Pyramids with Nanoscale Tips. Nano Letters, 2005. 5(7): p. 1199-1202. 40.W.C. Bigelow, D.L. Pickett, W.A. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science, 1946. 1(6): p. 513-538. 41.R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483. 42.J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1169. 43.M.J. Esplandiu, H. Hagenstrom, D.M. Kolb, Functionalized self-assembled alkanethiol monolayers on Au(111) electrodes: 1. Surface structure and electrochemistry. Langmuir, 2001. 17(3): p. 828-838. 44.A. Kudelski, Structures of monolayers formed from different HS-(CH2)(2)-X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 2003. 34(11): p. 853-862. 45.J.A.M. Sondaghuethorst, L.G.J. Fokkink, ELECTROCHEMICAL CHARACTERIZATION OF FUNCTIONALIZED ALKANETHIOL MONOLAYERS ON GOLD. Langmuir, 1995. 11(6): p. 2237-2241. 46.M. Kawasaki, T. Sato, T. Tanaka, K. Takao, Rapid self-assembly of alkanethiol monolayers on sputter-grown Au(111). Langmuir, 2000. 16(4): p. 1719-1728. 47.Y R. Yamada, H. Wano, K. Uosaki, Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au(111) surface. Langmuir, 2000. 16(13): p. 5523-5525. 48.Y.-F. Liu, K. Krug, P.-C. Lin, Y.-D. Chiu, Y.-L. Lee, W.-P. Dow, Structural Transitions of Octanethiol Self-Assembled Monolayers on Gold Nanoplates after Mild Thermal Annealing. The Journal of Physical Chemistry C, 2011. 115(13): p. 5868-5874. 49.V. Chechik, R.M. Crooks, C.J.M. Stirling, Reactions and Reactivity in Self-Assembled Monolayers. Advanced Materials, 2000. 12(16): p. 1161-1171. 50.M.A. Schneeweiss, H. Hagenstrom, M.J. Esplandiu, D.M. Kolb, Electrolytic metal deposition onto chemically modified electrodes. Applied Physics a-Materials Science & Processing, 1999. 69(5): p. 537-551. 51.M. Mrksich, G.M. Whitesides, Using Self-Assembled Monolayers to Understand the Interactions of Man-made Surfaces with Proteins and Cells. Annual Review of Biophysics and Biomolecular Structure, 1996. 25(1): p. 55-78. 52.T.P. Moffat, D. Wheeler, D. Josell, Electrodeposition of copper in the SPS-PEG-Cl additive system - I. Kinetic measurements: Influence of SPS. Journal of the Electrochemical Society, 2004. 151(4): p. C262-C271. 53.S.-E. Bae, A.A. Gewirth, In situ EC-STM studies of MPS, SPS, and chloride on Cu(100): Structural studies of accelerators for dual damascene electrodeposition. Langmuir, 2006. 22(25): p. 10315-10321. 54.W.-P. Dow, Y.-D. Chiu, M.-Y. Yen, Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide. Journal of The Electrochemical Society, 2009. 156(4): p. D155-D167. 55.M. Tan, C. Guymon, D.R. Wheeler, J.N. Harb, The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition. Journal of the Electrochemical Society, 2007. 154(2): p. D78-D81. 56.Z.D. Schultz, Z.V. Feng, M.E. Biggin, A.A. Gewirth, Vibrational Spectroscopic and Mass Spectrometric Studies of the Interaction of Bis(3-sulfopropyl)-disulfide with Cu Surfaces. Journal of The Electrochemical Society, 2006. 153(2): p. C97-C107. 57.K. Lu, L. Lu, S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science, 2009. 324(5925): p. 349-352. 58.L. Lu, X. Chen, X. Huang, K. Lu, Revealing the Maximum Strength in Nanotwinned Copper. Science, 2009. 323(5914): p. 607-610. 59.K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-9. 60.M.J. Burek, J.R. Greer, Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett, 2010. 10(1): p. 69-76. 61.D. Jang, X. Li, H. Gao, J.R. Greer, Deformation mechanisms in nanotwinned metal nanopillars. Nat Nano, 2012. 7(9): p. 594-601. 62.T.-C. Chan, Y.-L. Chueh, C.-N. Liao, Manipulating the Crystallographic Texture of Nanotwinned Cu Films by Electrodeposition. Crystal Growth & Design, 2011. 11(11): p. 4970-4974. 63.H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen, K.N. Tu, Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper. Science, 2012. 336(6084): p. 1007-1010. 64.L. Xu, P. Dixit, J. Miao, J.H.L. Pang, X. Zhang, K.N. Tu, R. Preisser, Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins. Applied Physics Letters, 2007. 90(3): p. 033111. 65.W.P. Dow, H.S. Huang, M.Y. Yen, H.H. Chen, Roles of chloride ion in microvia filling by copper electrodeposition - II. Studies using EPR and galvanostatic measurements. Journal of the Electrochemical Society, 2005. 152(2): p. C77-C88. 66.M. Kang, A.A. Gewirth, Influence of additives on copper electrodeposition on physical vapor deposited (PVD) copper substrates. Journal of the Electrochemical Society, 2003. 150(6): p. C426-C434. 67.N. Zukauskaite, A. Malinauskas, Electrocatalysis by a brightener in copper electrodeposition. Soviet Electrochemistry, 1988. 24(12): p. 1564-1566. 68.E.E. Farndon, F.C. Walsh, S.A. Campbell, Effect of thiourea, benzotriazole and 4,5-dithiaoctane-1,8-disulfonic acid on the kinetics of copper deposition from dilute-acid sulfate-solutions. Journal of Applied Electrochemistry, 1995. 25(6): p. 574-583. 69.E. Mattsson, J.O.M. Bockris, Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system. Transactions of the Faraday Society, 1959. 55(0): p. 1586-1601. 70.M. Fleischmann, H.R. Thirsk, Anodic electrocrystallization. Electrochimica Acta, 1960. 2(1–3): p. 22-49. 71.M. Yokoi, S. Konishi, T. Hayashi, Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper-sulfate bath. Denki Kagaku, 1984. 52(4): p. 218-223. 72.Z.V. Feng, X. Li, A.A. Gewirth, Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study. Journal of Physical Chemistry B, 2003. 107(35): p. 9415-9423. 73.Z. Nagy, J.P. Blaudeau, N.C. Hung, L.A. Curtiss, D.J. Zurawski, Chloride-ion catalysis of the copper deposition reaction. Journal of the Electrochemical Society, 1995. 142(6): p. L87-L89. 74.A. Hamelin, Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. Journal of Electroanalytical Chemistry, 1996. 407(1–2): p. 1-11. 75.J.M. Campina, A. Martins, F. Silva, A new cleaning methodology for efficient Au-SAM removal. Electrochimica Acta, 2008. 53(26): p. 7681-7689. 76.T.P. Moffat, D. Wheeler, D. Josell, Electrodeposition of Copper in the SPS-PEG-Cl Additive System: I. Kinetic Measurements: Influence of SPS. Journal of The Electrochemical Society, 2004. 151(4): p. C262-C271. 77.Y.-D. Chiu, W.-P. Dow, S.-M. Huang, S.-L. Yau, Y.-L. Lee, Sensitivity Enhancement for Quantitative Electrochemical Determination of a Trace Amount of Accelerator in Copper Plating Solutions. Journal of The Electrochemical Society, 2011. 158(5): p. D290-D297. 78.Y.-D. Chiu, W.-P. Dow, K. Krug, Y.-F. Liu, Y.-L. Lee, S.-L. Yau, Adsorption and Desorption of Bis-(3-sulfopropyl) Disulfide during Cu Electrodeposition and Stripping at Au Electrodes. Langmuir, 2012. 28(40): p. 14476-14487. 79.A. Ulman, Formation and Structure of Self-Assembled Monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554. 80.J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170. 81.G. Herzog, D.W.M. Arrigan, Application of Disorganized Monolayer Films on Gold Electrodes to the Prevention of Surfactant Inhibition of the Voltammetric Detection of Trace Metals via Anodic Stripping of Underpotential Deposits:  Detection of Copper. Analytical Chemistry, 2002. 75(2): p. 319-323. 82.L.-J. Wan, S.-L. Yau, K. Itaya, Atomic Structure of Adsorbed Sulfate on Rh(111) in Sulfuric Acid Solution. The Journal of Physical Chemistry, 1995. 99(23): p. 9507-9513. 83.O.M. Magnussen, Ordered Anion Adlayers on Metal Electrode Surfaces. Chemical Reviews, 2002. 102(3): p. 679-726. 84.A. Cuesta, M. Kleinert, D.M. Kolb, The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: an in situ STM study. Physical Chemistry Chemical Physics, 2000. 2(24): p. 5684-5690. 85.D.B. Parry, M.G. Samant, H. Seki, M.R. Philpott, K. Ashley, In situ Fourier transform infrared spectroelectrochemical study of bisulfate and sulfate adsorption on gold, with and without the underpotential deposition of copper. Langmuir, 1993. 9(7): p. 1878-1887. 86.C.H. Kuo, C.H. Chen, M.H. Huang, Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Advanced Functional Materials, 2007. 17(18): p. 3773-3780. 87.M. Petri, D.M. Kolb, U. Memmert, H. Meyer, Adsorption of mercaptopropionic acid onto Au(1 1 1). Electrochimica Acta, 2003. 49(1): p. 175-182. 88.S.J. Limmer, E.A. Kulp, J.A. Switzer, Epitaxial Electrodeposition of ZnO on Au(111) from Alkaline Solution:  Exploiting Amphoterism in Zn(II)†. Langmuir, 2006. 22(25): p. 10535-10539. 89.R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson, J.A. Switzer, Epitaxial Electrodeposition of Zinc Oxide Nanopillars on Single-Crystal Gold. Chemistry of Materials, 2001. 13(2): p. 508-512. 90.Z.L. Bao, K.L. Kavanagh, Epitaxial Fe∕GaAs via electrochemistry. Journal of Applied Physics, 2005. 98(6): p. 066103. 91.Z.L. Bao, K.L. Kavanagh, Epitaxial Bi∕GaAs diodes via electrodeposition. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2006. 24(4): p. 2138. 92.Z. Liang Bao, K.L. Kavanagh, Aligned Co nanodiscs by electrodeposition on GaAs. Journal of Crystal Growth, 2006. 287(2): p. 514-517. 93.D.W. Suggs, A.J. Bard, Scanning Tunneling Microscopic Study with Atomic Resolution of the Dissolution of Cu(111) in Aqueous Chloride Solutions. Journal of the American Chemical Society, 1994. 116(23): p. 10725-10733. 94.P.-Y. Yen, S. Chen, H.-L. Tu, H. Wu, S.-L. Yau, J.-S. Tsay, Epitaxial Electrodeposition of Cobalt on a Pt(111) Electrode Covered with a Cu(111) Film. The Journal of Physical Chemistry C, 2011. 115(48): p. 23802-23808. 95.F. Grillo, H. Fruchtl, S.M. Francis, N.V. Richardson, Site selectivity in the growth of copper islands on Au (111). New Journal of Physics, 2011. 13(1): p. 013044. 96.K. Krug, Y.-F. Liu, W.-H. Ho, Y.-L. Lee, W.-P. Dow, S.-L. Yau, Electrochemical Cu Growth on MPS-Modified Au(111) Electrodes. The Journal of Physical Chemistry C, 2012. 116(33): p. 17507-17517. 97.P.M. Vereecken, R.A. Binstead, H. Deligianni, P.C. Andricacos, The chemistry of additives in damascene copper plating. IBM Journal of Research and Development, 2005. 49(1): p. 3-18. 98.D.F. Yang, H. Al-Maznai, M. Morin, Vibrational Study of the Fast Reductive and the Slow Oxidative Desorptions of a Nonanethiol Self-Assembled Monolayer from a Au(111) Single Crystal Electrode. The Journal of Physical Chemistry B, 1997. 101(7): p. 1158-1166. 99.F. Loglio, M. Schweizer, D.M. Kolb, In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes. Langmuir, 2002. 19(3): p. 830-834. 100.J.P. Healy, D. Pletcher, M. Goodenough, The chemistry of the additives in an acid copper electroplating bath: Part I. Polyethylene glycol and chloride ion. Journal of Electroanalytical Chemistry, 1992. 338(1–2): p. 155-165. 101.Z.V. Feng, X. Li, A.A. Gewirth, Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths:  A Surface-Enhanced Raman Study. The Journal of Physical Chemistry B, 2003. 107(35): p. 9415-9423. 102.W.-P. Dow, M.-Y. Yen, W.-B. Lin, S.-W. Ho, Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating. Journal of The Electrochemical Society, 2005. 152(11): p. C769-C775. 103.T.P. Moffat, L.-Y. Ou Yang, Accelerator Surface Phase Associated with Superconformal Cu Electrodeposition. Journal of The Electrochemical Society, 2010. 157(4): p. D228-D241. 104.E. Garcia-Cardona, E.H. Wong, D.P. Barkey, NMR Spectral Studies of Interactions Between the Accelerants SPS and MPS and Copper Chlorides. Journal of The Electrochemical Society, 2011. 158(3): p. D143-D148. 105.P. Broekmann, A. Fluegel, C. Emnet, M. Arnold, C. Roeger-Goepfert, A. Wagner, N.T.M. Hai, D. Mayer, Classification of suppressor additives based on synergistic and antagonistic ensemble effects. Electrochimica Acta, 2011. 56(13): p. 4724-4734. 106.N.T.M. Hai, T.T.M. Huynh, A. Fluegel, M. Arnold, D. Mayer, W. Reckien, T. Bredow, P. Broekmann, Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating. Electrochimica Acta, 2012. 70(0): p. 286-295. 107.Y.-F. Liu, Y.-L. Lee, Y.-C. Yang, Z.-Y. Jian, W.-P. Dow, S.-L. Yau, Effect of Chloride Ions on the Adsorption of 3-Mercapto-1-propanesulfonic acid and Bis(3-sulfopropyl)-disulfide on a Au(111) Surface. Langmuir, 2010. 26(16): p. 13263-13271. 108.H. Tu, P. Yen, S. Chen, S. Yau, W.-P. Dow, Y.-L. Lee, In Situ STM Imaging of Bis-3-sodiumsulfopropyl-disulfide Molecules Adsorbed on Copper Film Electrodeposited on Pt(111) Single Crystal Electrode. Langmuir, 2011. 27(11): p. 6801-6807. 109.G.K. Jennings, P.E. Laibinis, Underpotentially Deposited Metal Layers of Silver Provide Enhanced Stability to Self-Assembled Alkanethiol Monolayers on Gold. Langmuir, 1996. 12(26): p. 6173-6175. 110.G.K. Jennings, P.E. Laibinis, Self-Assembled n-Alkanethiolate Monolayers on Underpotentially Deposited Adlayers of Silver and Copper on Gold. Journal of the American Chemical Society, 1997. 119(22): p. 5208-5214. 111.F.P. Zamborini, J.K. Campbell, R.M. Crooks, Spectroscopic, Voltammetric, and Electrochemical Scanning Tunneling Microscopic Study of Underpotentially Deposited Cu Corrosion and Passivation with Self-Assembled Organomercaptan Monolayers. Langmuir, 1998. 14(3): p. 640-647. 112.Y. Yanson, J.W.M. Frenken, M.J. Rost, A general model of metal underpotential deposition in the presence of thiol-based additives based on an in situ STM study. Physical Chemistry Chemical Physics, 2011. 13(35): p. 16095-16103. 113.J Z.-Y. Jian, T.-Y. Chang, Y.-C. Yang, W.-P. Dow, S.-L. Yau, Y.-L. Lee, 3-Mercapto-1-propanesulfonic acid and Bis(3-sulfopropyl) Disulfide Adsorbed on Au(111): In Situ Scanning Tunneling Microscopy and Electrochemical Studies. Langmuir, 2008. 25(1): p. 179-184. 114.H. Hagenstrom, M.A. Schneeweiss, D.M. Kolb, Copper underpotential deposition on ethanethiol-modified Au(111) electrodes: kinetic effects. Electrochimica Acta, 1999. 45(7): p. 1141-1145. 115.A.V. Benedeti, P.T.A. Sumodjo, K. Nobe, P.L. Cabot, W.G. Proud, Electrochemical studies of copper, copper-aluminium and copper-aluminium-silver alloys: Impedance results in 0.5M NaCl. Electrochimica Acta, 1995. 40(16): p. 2657-2668. 116.H.Y. Ma, C. Yang, B.S. Yin, G.Y. Li, S.H. Chen, J.L. Luo, Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions. Applied Surface Science, 2003. 218(1–4): p. 144-154. 117.T. Okubo, K. Watanabe, K. Kondo, Analytical Study of the Characteristics of Cu ( I )  Species for the Via-Filling Electroplating Using a RRDE. Journal of The Electrochemical Society, 2007. 154(3): p. C181-C187. 118.Z. Nagy, J.P. Blaudeau, N.C. Hung, L.A. Curtiss, D.J. Zurawski, Chloride Ion Catalysis of the Copper Deposition Reaction. Journal of The Electrochemical Society, 1995. 142(6): p. L87-L89. 119.W.-P. Dow, H.-S. Huang, M.-Y. Yen, H.-H. Chen, Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition: II. Studies Using EPR and Galvanostatic Measurements. Journal of The Electrochemical Society, 2005. 152(2): p. C77-C88. 120.H.P. Lee, K. Nobe, Kinetics and Mechanisms of Cu Electrodissolution in Chloride Media. Journal of The Electrochemical Society, 1986. 133(10): p. 2035-2043. 121.F.K. Crundwell, The anodic dissolution of copper in hydrochloric acid solutions. Electrochimica Acta, 1992. 37(15): p. 2707-2714. 122.D.M. Soares, S. Wasle, K.G. Weil, K. Doblhofer, Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 2002. 532(1–2): p. 353-358. 123.C.D. Bain, E.B. Troughton, Y.T. Tao, J. Evall, G.M. Whitesides, R.G. Nuzzo, Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335. 124.M. Wirde, U. Gelius, L. Nyholm, Self-Assembled Monolayers of Cystamine and Cysteamine on Gold Studied by XPS and Voltammetry. Langmuir, 1999. 15(19): p. 6370-6378. 125.T.P. Moffat, D. Wheeler, W.H. Huber, D. Josell, Superconformal Electrodeposition of Copper. Electrochemical and Solid-State Letters, 2001. 4(4): p. C26-C29. 126.A.C. West, S. Mayer, J. Reid, A Superfilling Model that Predicts Bump Formation. Electrochemical and Solid-State Letters, 2001. 4(7): p. C50-C53. 127.K. Kondo, N. Yamakawa, Z. Tanaka, K. Hayashi, Copper damascene electrodeposition and additives. Journal of Electroanalytical Chemistry, 2003. 559(0): p. 137-142. 128.K. Kondo, T. Matsumoto, K. Watanabe, Role of Additives for Copper Damascene Electrodeposition: Experimental Study on Inhibition and Acceleration Effects. Journal of The Electrochemical Society, 2004. 151(4): p. C250-C255. 129.W.-P. Dow, H.-S. Huang, Z. Lin, Interactions Between Brightener and Chloride Ions on Copper Electroplating for Laser-Drilled Via-Hole Filling. Electrochemical and Solid-State Letters, 2003. 6(9): p. C134-C136. 130.Y.-F. Liu, K. Krug, P.-C. Lin, Y.-D. Chiu, Y.-L. Lee, W.-P. Dow, Scanning Tunneling Microscopy and Cyclic Voltammetry Study of Self-Assembled 3,3′-Thiobis(1-propanesulfonic acid, sodium salt) Monolayers on Au(111) Electrodes. The Journal of Physical Chemistry C, 2011. 115(15): p. 7638-7647. 131.Y.-F. Liu, K. Krug, P.-C. Lin, Y.-D. Chiu, W.-P. Dow, S.-L. Yau, Y.-L. Lee, In Situ STM Study of Cu Electrodeposition on TBPS-Modified Au(111) Electrodes. Journal of The Electrochemical Society, 2011. 159(2): p. D84-D90. 132.A. Kudelski, Structures of monolayers formed from different HS—(CH2)2—X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 2003. 34(11): p. 853-862. 133.H. Tu, P. Yen, H. Wu, S. Chen, W. Vogel, S. Yau, W.-P. Dow, In Situ STM of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) Electrode and Its Effect on the Electrodeposition of Copper. Journal of The Electrochemical Society, 2010. 157(4): p. D206-D210. 134.W.-P. Dow, C.-C. Li, M.-W. Lin, G.-W. Su, C.-C. Huang, Copper Fill of Microvia Using a Thiol-Modified Cu Seed Layer and Various Levelers. Journal of The Electrochemical Society, 2009. 156(8): p. D314-D320. 135.S.-E. Bae, A.A. Gewirth, In Situ EC-STM Studies of MPS, SPS, and Chloride on Cu(100):  Structural Studies of Accelerators for Dual Damascene Electrodeposition†. Langmuir, 2006. 22(25): p. 10315-10321. 136.C.E. Taubert, D.M. Kolb, U. Memmert, H. Meyer, Adsorption of the Additives MPA, MPSA, and SPS onto Cu(111) from Sulfuric Acid Solutions. Journal of The Electrochemical Society, 2007. 154(6): p. D293-D299. 137.P. Yen, H. Tu, H. Wu, S. Chen, W. Vogel, S. Yau, W.-P. Dow, In Situ Scanning Tunneling Microscopy Study of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) and Electrodeposition of Copper in 0.1 M KClO4 + 1 mM HCl (pH 3). The Journal of Physical Chemistry C, 2011. 115(16): p. 8110-8116.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3224-
dc.description.abstract本實驗著重有機硫化分子在電鍍銅上的研究與應用。利用分子自組裝的方法修飾黃金基材,並搭配線性掃描沉積合成出奈米雙晶銅牆,其中包含針對鍍液組成與電鍍參數對整個製程的影響做研究,以釐清造成此奈米雙晶銅牆的主要成因,並詳細探討其生成機制。實驗發現電鍍液組成在硫酸系統下搭配有機硫化分子3-Mercaptopropionic acid (MPA) 對黃金基材進行表面改質,所得到的雙晶銅牆良率最高,此外本實驗另一個特色就是不需要使用任何模組就可以合成出有方向性的奈米雙晶銅牆陣列,主要是黃金基材在進行分子自組裝前會先經過氫焰鍛燒,推測應該是黃金基材在氫焰鍛燒過程中,金原子進行規律的重排所致。 但是如果省略了分子自組裝的動作,發現只利用調控掃描的終端電位在kinetic control的範圍內,不添加任何電鍍添加劑下,也能合成出有方向性的金字塔形狀銅金屬顆粒,其金屬顆粒成長的方向跟底部黃金基材不同的晶面有關,最後也探討鍍銅常見的光澤劑SPS在電鍍過程中轉置的機制,且更進一步利用其分析手法開發出新穎的盲孔填充光澤劑3,3-thiobis(1-propanesulfonic acid, sodium salt) (TBPS)。zh_TW
dc.description.abstractIn this thesis, we focused on the studies of organosulfides and their applications on Cu electrodeposition. The basic concept of the research is based on self-assembled monolayers (SAMs) of organosulfides, using it to modify Au electrode surface and combined with linear sweep voltammetry (LSV) to synthesize nano twinned copper (nt-Cu) wall. Meanwhile, we investigated the effects of the compositions of electrolyte and electroplating parameters to clarify the formation mechanism of nt-Cu wall. We found that when the electrolyte contained sulfuric acid and the Au electrode surface was modified by 3-Mercaptopropionic acid (MPA), nt-Cu walls with a good yield could be obtained without using a template. Highly regular array of nt-Cu walls can be achieved after the Au electrode surface was annealed by hydrogen flame before Au electrode surface modification. Oriented pyramid-like Cu particles could be synthesized on the non-modified Au electrode surface without adding any additives in the copper plating solution but only controlling the terminal potential of LSV within kinetics-controlled regime. The growth direction of pyramid-like Cu particle was related to different facet of the Au electrode substrate. Finally, we also studied the transferable mechanism of the well-known brightener, SPS, during the plating process, and further used its analytic method to screen for an novel brightener, 3,3-thiobis(1-propanesulfonic acid, sodium salt) (TBPS) for microvia filling of a printed circuit board (PCB).en_US
dc.description.tableofcontents摘要................................................. I Abstract............................................ II 誌謝................................................ III 目錄................................................ IV 表目錄.............................................. VII 圖目錄..............................................VIII 第一章緒論及文獻回顧...................................1 1.1規律狀奈米金屬顆粒的合成............................1 1.1.1簡介..............................................1 1.1.2形狀控制機制探討..................................8 1.1.2.1成長動力學......................................8 1.1.2.2成長型狀.......................................10 1.1.2.3成長方向.......................................11 1.2自組裝薄膜 Self-Assemble Monolaters (SAM)..........15 1.2.1簡介.............................................15 1.2.3應用.............................................20 1.2.3.1微接觸印壓micro-contact printing (μCP)........20 1.2.3.2印刷電路板之電鍍填孔...........................21 1.2.3.3電鍍之阻障分子膜...............................22 1.3雙晶簡介...........................................23 1.3.1雙晶定義.........................................23 1.3.2雙晶材料特性與應用...............................24 1.4 電鍍添加劑簡介...................................28 1.4.1有機添加劑.......................................28 1.4.1.1加速劑(Accelerator)............................28 1.4.1.2抑制劑(Suppressor).............................29 1.4.2無機添加劑 ...................................32 1.4.2.1氯離子(Cl-)....................................32 1.4.2.2氫離子(H+).....................................32 1.5研究動機...........................................34 第二章 利用分子自組裝方法搭配線性掃描電沉積合成具有方向性之奈米雙晶銅牆..........................................35 2.1介紹...............................................35 2.2實驗步驟、藥品、裝置...............................35 2.2.1黃金電極進行自組裝單分子膜修飾...................35 2.2.2 線性掃描(Linear Sweep Voltammetry; LSV)電沉積...39 2.2.3電鍍實驗系統.....................................40 2.2.4實驗藥品.........................................41 2.2.5實驗裝置.........................................42 2.3結果與討論.........................................43 2.3.1奈米銅牆成因探討.................................43 2.3.1.1 硫醇分子修飾效應..............................43 2.3.1.2 不同基材效應..................................45 2.3.1.3 硫酸根與硫酸氫根效應..........................46 2.3.1.4 陰離子效應....................................51 2.3.1.5銅離子來源效應.................................54 2.3.1.6 不同硫酸銅濃度效應............................57 2.3.1.7 不同掃描速率效應..............................60 2.3.1.8 不同硫醇分子修飾效應..........................61 2.3.2 方向性奈米銅牆陣列成因探討......................63 2.3.2.1 基材前處理....................................63 2.3.2.2 不同晶面的探討................................65 2.3.2.3 不同沉積溫度效應..............................69 2.3.2.4 奈米銅牆結構鑑定..............................72 2.4 結論..............................................81 第三章 利用電位控制金屬沉積動力學合成出具有完美晶面之金字塔形狀銅顆粒............................................82 3.1介紹...............................................82 3.2實驗步驟、藥品、裝置...............................83 3.2.1 電極基材製備....................................83 3.2.2 線性掃描(Linear Sweep Voltammetry; LSV)電沉積...84 3.2.3電鍍實驗系統.....................................85 3.2.4實驗藥品.........................................87 3.2.5實驗裝置.........................................87 3.3結果與討論.........................................88 3.3.1線性掃描終端電位效應.............................88 3.3.2不同掃描速率效應.................................89 3.3.3不同晶面的探討...................................91 3.3.4 高良率完美晶面金字塔銅顆粒製備..................93 3.3.5 不同掃描速率效應................................94 3.3.6 不同沉積溫度效應................................94 3.4 結論.............................................106 第四章Bis-(3-sulfopropyl) Disulfide在黃金電極上進行銅的電化學沉積與剝離時的吸脫附...............................107 4.1介紹..............................................107 4.2實驗..............................................108 4.2.1 Cyclic Voltammetry Stripping (CVS).............108 4.2.2 Field-Emission Scanning Electron Microscopy (FESEM)..............................................109 4.2.3 X-ray Photoelectron Spectroscopy (XPS) 109 4.3結果討論..........................................110 4.3.1循環伏安剝離(Cyclic Voltammetry Stripping, CVS).................................................110 4.3.2 .銅在黃金電極上剝離後再重新沉積之CVS...........111 4.3.3銅沉積在金電極上FESEM微結構.....................114 4.3.4. XPS 分析......................................115 4.3.4.1. SPS在黃金電極表面的吸附.....................116 4.3.4.2. SPS在Cu/Au電極表面的吸附....................116 4.3.4.3 SPS從金轉置到銅OPD層 ........................116 4.3.4.4 SPS從銅OPD層轉置到金.........................116 4.3.5經過SPS浸泡修飾電極進行銅沉積與溶解示意圖.......117 4.3.5.1 SPS修飾之黃金電極進行銅的沉積與溶解..........117 4.3.5.2 SPS修飾之Cu/Au電極進行銅的溶解 .............. 117 4.4結論..............................................130 第五章 利用Cyclic Voltammetry(CV) 的方法篩選銅電鍍盲孔填充之加速劑 ............................................131 5.1介紹...............................................131 5.2 實驗..............................................131 5.2.1 Cyclic voltammetry(CV)..........................131 5.2.2 銅電鍍盲孔填充..................................132 5.3 結果與討論........................................133 5.4結論...............................................146 第六章 總結...........................................147 文獻參考..............................................149 個人著作..............................................160zh_TW
dc.language.isozh_TWen_US
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307201314551700en_US
dc.subject有機硫化物修飾銅zh_TW
dc.subjectOrganosulfides-modified Cuen_US
dc.subject金電極zh_TW
dc.subject電鍍銅zh_TW
dc.subjectAu Electrodesen_US
dc.subjectCu Electrodepositionen_US
dc.title有機硫化物修飾銅、金電極之研究及其在電鍍銅上的應用zh_TW
dc.titleStudies of Organosulfides-modified Cu and Au Electrodes and Their Applications on Cu Electrodepositionen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.