Please use this identifier to cite or link to this item:
標題: 杏鮑菇液態醱酵培養條件生產胞外多醣體及其特性探討
Study of culture conditions on exopolysaccharide production and its characteristic by Pleurotus eryngii in the submerged culture
作者: 陳華彬
Chen, Hua-Ping
關鍵字: 杏鮑菇菌;Pleurotus eryngii;液態培養;多醣體;杏鮑菇水解粉;發光二極體;廢棄物處理;submerged culture;exopolysaccharide;mushroom hydrolysate powder;LED;waste treatment
出版社: 化學工程學系所
引用: [1] 杜巍, 李元瑞, 袁靜. 食藥用菌多糖生物活性與結構關係. 中國藥學;21:32-34. (2002) [2] 賴進此. 菇類機能性成分的分離與純化. 食品工業;5:36-48. (2002) [3] 彭金騰. 杏鮑菇栽培技術簡介. (2009) [4] Chang S.T. Witnessing the development of the mushroom industryin China. Proceedings of the Fifth International Conference on Mushroom Biology and Mushroom Products. Acta Edulis Fungi;12:3-19. (2005) [5] Manzi P., Marconi S., Aguzzi A., Pizzoferrato L. Commercial mushrooms: nutritional quality and effect of cooking. Food Chem.;84:201-206. (2004) [6] Manzi P., Gambelli L., Marconi S., Vivanti V., Pizzoferrato L. Nutrients in edible mushrooms – an inter-species comparative study. Food Chem.;65:477-482. (1999) [7] Wasser S.P.,Weis A.L. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (review). Int.J. Med. Mushrooms.;1:31-62. (1999) [8] Wang H.,Ng T.B. Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochem. Biophys. Res. Commun. ;289:750-755. (2001) [9] Wang H., Ng T.B. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides.;25:1-5. (2004) [10] Wang H., Ng T.B. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl. Microbiol. Biotech.;69:521-525. (2006) [11] Kim S.W., Kim H.G., Lee B.E., Hwang H.H., Baek D.H., Ko S.Y. Effects of mushroom, Pleurotus eryngii, extracts on bone metabolism. Clin. Nutr.;25:166-170. (2006) [12] Shimizu K., Yamanaka M., Gyokusen M., Kaneko S., Tsutsui M., Sato J., Sato I., Sato M., Kondo R. Estrogen-like activity and prevention effect of bone loss in calcium deficient ovariectomized rats by the extractof Pleurotus eryngii. Phytother. Res.; 20:659-664. (2006) [13] Dubost N.J., Ou B., Beelman R.B. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem.;105:727-735. (2007 ) [14] Fu M., Lin J., Wu Z., Lin Q., Xie L. Screening of proteins anti-tobacco mosaic virus in Pleurotus eryngii. Wei Sheng Wu Xue Bao.;43:29-34. (2003) [15] Peng J.T., Lee C.M., Tsai Y.F. Effect of rice bran on the production of different king oyster mushroom strains during bottle cultivation. J. Agric. Res. China.;49:60-67. (2000 ) [16] Zervakis G., Philippoussis A., Ioannidou S., Diamantopoulou P. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol.;46:231-234. (2001b) [17] Hanai H., Ishida S., Saito C., Maita T., Kusano M., Tamogami S., Noma M. Stimulation of mycelia growth in several mushroom species by rice husks Biosci.Biotechnol. Biochem.;69:123-127. (2005 ) [18] Okano K., Fukui S., Kitao R., Usagawa T. Effects of culture length of Pleurotus eryngii grown on sugarcane bagasse on in vitro digestibility and chemical composition. Animal Feed Sci. Technol.;136:240-247(2007) [19] Rodriguez Estrada A.E., Royse D.J. Yield, size, bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper, whole ground soybean. Biores.Technol.;98:1898–1906. (2007 ) [20] Muñoz C., Guillen F., Martínez T.A., Martínez J.M. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties,and participation in activation of molecular oxygen and Mn2+ oxidation. Appl. Environ. Microbiol.;63:2166-2174. (1997 ) [21] Martinez M.J., Ruiz-Dueñas F.J., Guillén F., Martinez A.T. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem.;237:424-432. (1996) [22] Stajic M., Persky L., Friesem D., Hadar Y., Wasser S.P., Nevo E., Vukojevic J. Effect of different carbon and nitrogen sources on laccase and peroxidases activity by selected Pleurotus species. Enzyme Microb. Technol. ; 38:65-73. (2006b) [23] Stajic´ M., Persky L., Hadar Y., Friesem D., Duletic´-Laus˘evic S., Wasser S.P., Nevo E. Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes. Appl. Biochem. Biotech.;128:87-96. (2006c) [24] Varela E., Guillén F., Martinez A.T., Martinez M.J. Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim. Biophys. Acta.;1546:107-113. (2001) [25] Alexander M. Introduction to soil microbiology. 2nd edn.Wiley, New York;(1977 ) [26] Hadar Y., Dosoretz C.G. Mushroom mycelium as a potential source of food flavor. Trends in Food Sci. Technol.;2:214-218. (1991) [27] Mau J.L., Beelman R.B., Ziegler G.R. Aroma and flavorcomponents of cultivated mushrooms.In "Spices, Herbs and Edible Fungi. G. Charalambous, Ed., Elsevier Sci. Publ.mesterdam, The Netherlands.;(1991) [28] Dijkstra F.Y.,Wiken T.O. Studies on Mushroom flavor. Flavor compounds in Coprinus comatus Lebensm.Unters. Forsch.;263-269. (1976) [29] Hikino H., Kanno C., Mirin Y., Hayashi T. Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganoderma lucidum fruit bodies. Planta Med.;39-40. (1985) [30] Kim D.H., Yang B.K., Jeong S.C., Park J.B., Cho S.P., Das S., Yun J.W., Song C.H. Production of hypoglycemic, extra cellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol Lett.;23:513-517. (2001 ) [31] Pirog T.P., Malashenko Y.R., Votselko S.K. A two-stage cultivation technique for producing microbial exopolysaccharide ethapolan with improve rheological properties. Appl Biochem Microbiol.;37:368-373. (2001) [32] Sone Y., Kakuta M., Misaki A. Isolation and characterization of polysaccharide of "Kikurage" fruit body of Auricularia auricula-judae. Agr Biol Chem.;42:417-425. (1978) [33] Ukai S., Kiho T., Hara C., Kuruma I., Tanaka Y. Polysaccharide in fungi. Anti-inflammatory effect of the polysaccharides from the fruit bodues of several fungi. J Pharmacobiodyn.;6:983-990. (1983) [34] Hetland G., Ohno N., Aaberge I.S., Lovik M. Protective effect of ?glucan against systemic Streptococcus pneumoniae infection in mice. FEMS Immunol Med Mic.;27:111-116. (2000) [35] Kim H.S., Kacew S., Lee B.M. In vitro chemopreventive effects of plant polysaccharides (Aloe barbadensis miller, Lentinus edodes, Ganoderma lucidum and Coriolus versicolor). Carcinogenesis.;20:1637-1640. (1999) [36] Zhang G.L., Wang Y.H., Ni W., Teng H.L., Lin Z.B. Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune Liver injury in mice. world j. gastroenterol.;8:728-733. (2002) [37] Stajić M., Vukojević J., Duletić-Lausević S. Biology of Pleurotus eryngii and role in biotechnological processes: a review. Crit Rev Biotechnol.;29:55-66. (2009) [38] Woodruff H.B. Natural products from microorganisms. Science;208:1225-1229. (1980) [39] 蕭明熙. 真菌代謝物之最近研究趨勢. 真菌學之最近發展專題演講論文集專刊;163-183. (1985) [40] Kuboat T., Asaka Y. Structure of ganoderic acid A and B, two new lanostane type bitter triterpenes from Ganoderma lucidum Karst. Helvetica Chimica Acta.;65: 611-619. (1982) [41] Shiao M.S. Natural products of the medical fungus Ganoderma lucidum: occurence,biological activites, and pharmacological functions. Chemical Record;3:172-180. (2003) [42] Toth J.O., Luu B., Beck J.P., Ourisson G. Cytotoxic triterpenes from Ganderma lucidum (Polyporacease): Structure of ganoderic acids U-Z. J. Chem. Res.;5:299. (1983) [43] Lin C.N.,Tome W.P. Novel cytotoxic principles of Formosan Ganoderma lcidum. J. Nat. Prod.;54:998-1002. (1991) [44] 水野卓,川和正允. 菇類的化學、生化學. 國立編譯館;38. (1997) [45] Miyazaki T., Oikawa N., Yamada H., Yadomae T. Structural examination of antitumour, water-soluble glucans from Grifora umbellata by use of four type of glucanase. Carbohydr. Res.;65:235-241. (1978) [46] Anne B., Kay V., Ronja T., Janina P., Daniel V., Nicole F.D., Reinhard F. The Aspergillus nidulans phytochrome fpha represses sexual development in the red light. Current Biology;15:1833-1838. (2005) [47] Purschwitz J., Müller S., Kastner C., Fischer R. Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol.;9:566-571. (2006) [48] Wang Y., Zhang L., Li Y., Hou X., Zeng F. Correlation of structure to antitumor activities of five derivatives of a b-glucan from Poria cocos sclerotium. Carbohydr. Res.;339:2567-2574. (2004) [49] B.J. S., Nie X.H., Chen L.Z., Liu Y.L., Tao W.Y. Anticancer activities of a chemically sulfated polysaccharide obtained from Grifola frondosa and its combination with 5-Fluorouracil against human gastric carcinoma cells. Carbohydr. Polym.;68:687-692. (2007) [50] Sun Z., He Y., Liang Z.Q., Zhou W., Niu T. Sulfation of (1 /3)-b-D-glucan from the fruiting bodies of Russula virescens and antitumor activities of the modifiers. Carbohydr. Polym.;77:628-633. (2009) [51] Huang H.C., Liu Y.C. Enhancement of polysaccharideproduction by optimization of culture conditions in shake flask submerged cultivation of Grifola umbellata. J. Chin. Inst. Chem. Engrs.;39:307-311. (2008) [52] Dubois M., Gilles K.A., Revers A.P., Smith F. Calorimetric method for determination of sugars and related substance. Anal Chem.;28:350-356. (1956) [53] Koach. MVSP - A multivariate statistical package for Windows. version 3.1. Koach Computing Services. Pentraeth, UK. (1999) [54] Tang Y.J., Zhong J.J. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb. Technol.;31:20-28. (2002) [55] Xiao J.H., Xiao D.M., Xiong Q., Liang Z.Q., Zhong J.J. Nutritional requirements for the hyperproduction of bioactive exopolysaccharides by submerged fermentation of the edible medicinal fungus Cordyceps taii. Biochem. Eng. J.;49:241-249. (2010) [56] Feng Y.L., Li W.Q., Wu X.Q., Cheng J.W., Ma S.Y. Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochem. Eng. J.;49:104-112. (2010) [57] Lin E.S., Sung S.C. Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Int. J. Food Microbiol.;108:182-187. (2006) [58] Zhu L.W., Zhong J.J., Tang Y.J. Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum. Process Biochem.;43:1359-1370. (2008) [59] Chen H.B., Kao P.M., Huang H.C., Shieh C.J., Chen C.I., Liu Y.C. Effects of using various bioreactors on chitinolytic enzymes production by Paenibacillus taichungensis. Biochem. Eng. J.;49:337-342. (2010) [60] Li H., Xu H., Li S., Feng X., Xu H., Ouyang P. Effects of dissolved oxygen and shear stress on the synthesis and molecular weight of welan gum produced from Alcaligenes sp. GMCC2428. Process Biochem. ;46:1172-1178. (2011) [61] Dwek R.A. ChemInform Abstract: Glycobiology: Toward Understanding the Function of Sugars. ChemInform;27:683-720. (1996) [62] Yang C.M., Zhou Y.J., Wang R.J., Hu M.L. Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights. J. Ethnopharmacol. ;407-412:(2009) [63] Lavi I., Friesem D., Geresh S., Hadar T., Schwartz B. An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells. Cancer Lett. ;244:61-70. (2006) [64] Sun L., Wang L., Zhou Y. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr. Polym.;87:1206-1210. (2012) [65] Danesi E.D.G., Rangel-Yagui C.O., Carvalho J.C.M., Sato S. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg. ;26:329-335. (2004) [66] Borkovich K.A., Alex L.A., Yarden O., Freitag M., Turner G.E., Read N.D., Seiler S., Bell-Pedersen D., Paietta J., Plesofsky N., Plamann M., Goodrich-Tanrikulu M., Schulte U., Mannhaupt G., Nargang F.E., Radford A., Selitrennikoff C., Galagan J.E., Dunlap J.C., Loros J.J., Catcheside D., Inoue H., Aramayo R., Polymenis M., Selker E.U., Sachs M.S., Marzluf G.A., Paulsen I., Davis R., Ebbole D.J., Zelter A.K., E.R. O''Rourke, R. Bowring, F. Yeadon, J. Ishii, C. Suzuki, K. Sakai, W. Pratt, R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev.;1-108. (2004) [67] 李欣樺, 洪進雄, 薛智升, 甘祥佑, 謝易甍. 低溫及 LED 光質處理對阿魏菇 (Pleurotus eryngii var. ferulae) 原基誘導之影響. Fung. Sci.;23:1-10. (2008) [68] Poyedinok N.L., Mykchaylova O.B., Shcherba V.V., Buchalo A.S., Negriyko A.M. Light regulation of growth and biosynthetic activity of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. Aphyllophoromycetideae), in pure culture. Int. J. Med. Mushrooms.;10:369-378. (2008) [69] Zapata P.A., Rojas D.F., Ramírez D.A., Fernández C., Atehortúa L. Effect of different light-emitting diodes on mycelial biomass production of Ling Zhi or Reishi medicinal mushroom Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae). Int. J. Med. Mushrooms;11:93-99. (2009) [70] Arjona D., Aragón C., Aguilera J.A., Ramírez L., Pisabarro A.G. Reproducible and controllable light induction of in vitro fruiting of the white-rot basidiomycete Pleurotus ostreatus. Mycol. Res.;113:552-558. (2009) [71] Souw P.,Demain A.L. Role of citrate in xanthan production production by Xamthomonas campestris. J. Ferment. Technol.;58:411-416. (1980) [72] Haq I., Ali S., Qadeer M.A., Iqbal J. Stimulatory effect of alcohols on citric acid productivity by a 2-deoxy D-glucose resistant culture of Aspergillus niger GCB-47. Bioresource Technol.;86:227-233. (2003) [73] Silva C.C., Dekker R.F., Silva R.S.S., Corradi da Silva M.L., Barbosa A.M. Effect of soybean oil and Tween 80 on the production of botryosphaeran by Botryophaeria rhodina MAMB-05. Process Biochem.;42:1254-1258. (2007) [74] Hsieh C., Wang H.L., Chen C.C., Hsu T.H., Tseng M.H. Effect of plant oil and surfacant on the production of mycelial biomass and polysaccharides in submerged culture of Grifola frondosa. Biochem. Eng. J. ;(2007) [75] Lim J.M.,Yun J.W. Enhanced production of exopolysaccharides by supplementation of toluene in submerged culture of an edible mushroom Collybia maculata TG1. Process Biochem.;41:1620-1626. (2006) [76] Katic M., Frantar J., Grgic I., Podgornik H., Perdih A. Polyethylene stimulates lignin peroxidase production in Phanerochaete chrysosporium. Folia Mocrobiol.;43:631-634. (1998) [77] Shou C.H., Chen Y.C., Hsu Y.C. Effects of citric acid on cell growth and schizophyllan formation in submerged culture of Schizophyllum commun. J. Chin. Chem. Engrs.;33:315-325. (2002) [78] Shu C.Y., Lung M.Y., Xu C.J. Effect of sopplementation of succinic acid on the production and molecular weight discribution of exopolysaccharides by Antrodia camphorata in batch culture. J. Chem. Technol. Biotechnol.;80:216-222. (2005) [79] Yang F., Ke Y., Kuo S. Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures. Enzyme Microb Technol.;295-301. (2000) [80] Park J.P., Kim S.W., Hwang H.J., Cho Y.J., Yun J.W. Stimulatory effect of plant oils and fatty acids on the exo-biopolymers production in Cordyceps militaris. Enzyme Microb Technol.;31:250-255. (2002) [81] Hsieh C., Liu C.J., Tseng M.H., Lo C.T., Yang Y.C. Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifola frondosa under high oxygen concentration aeration. Enzyme Microb. Technol.;39:434-439. (2006) [82] Haq I., Ali S., Qadeer M.A., Iqbal J. Stimulatory effect of alcohols on citric acid productivity by a 2-deoxy D-glucose resistant culture of Aspergillus niger GCB-47. Bioresource Technol.;86: 227-233. (2003) [83] Yang H.L., Wu T.X., Zhang K.C. Enhancement of mycelial growth and polysaccharide production in Ganoderma lucidum (the Chinese medicinal fungus ''Lingzhi'') by the addition of ethanol. Biotechnol. Lett.;26:841-844. (2004) [84] Chen H.B., Huang H.C., Chen C.I., I Y.P., Liu Y.C. The use of additives as the stimulator on mycelial biomass and exopolysaccharide productions in submerged culture of Grifola umbellata. Biopro. Biosyst. Eng.;33:401-406. (2010)
本論文主要包含三個部分。第一部分,為培養基質及製備杏鮑菇水解粉(MHP)對杏鮑菇菌絲體生長與多醣體生產之探討。其結果顯示,以葡萄糖(2%)及MHP(1.6%) 為最佳碳、氮源供以菌絲體及胞外多醣體生產,其比生長速率(specific growth rate)及比胞外多醣體產率(specific EPS yield) 分別為0.68 day-1及 9.55 g/g-dry-cell-weight ,而其菌絲體生長速率及胞外多醣體產量分別為2.05 g/L/day及 92 mg/L。於5公升醱酵槽放大試驗中,其菌絲體生長速率及胞外多醣體產量為2.44 g/L/day 及312 mg/L。 於固態培養時,使用MHP 培養基(6.43±0.21 mm/day)其菌絲生長速度比馬鈴薯培養基(4.57±0.23 mm/day) 快速,藉由不同濃度MHP調整,其高低分子量之胞外多醣體亦可隨之調整其比例,由PCA及cluster 分析結果,其MHP主要胺基酸與杏鮑菇菌絲體水解粉(PEMHP)相當接近。
第二部分於杏鮑菇液態醱酵培養過程中,針對不同光波長之LED燈進行照射,於固態培養時,紅光最有助於菌絲體生長,其菌絲生長速率為5.36 mm/day,於液態醱酵培養時,使用藍光可得到最大胞外多醣體之產量,其值為455 mg/L,為不照光提升7.71倍,使用紅光及黃光時,有助於得到高分子量(1000~1200 kDa)之胞外多醣體。
第三部分於杏鮑菇液態醱酵培養過程中,分別使用不同添加劑(如:有機酸、醇類、植物油與界面活性劑等)加入培養基中,探討添加劑與杏鮑菇液態醱酵培養菌絲體生長與多醣體生產之影響,以期促進杏鮑菇菌絲體生長與多醣體生產之效率。結果顯示,添加異丙醇為最佳提升胞外多醣體產量之添加物,異丙醇濃度在0.5 %下為最佳值,其胞外多醣體可達215 mg/L,為未加添加前提升3.47倍。不同時間添加異丙醇於杏鮑菇培養時之菌絲體產量並無顯著性差異,於第2天時添加可獲得最高之胞外多醣體產量,其值可達240 mg/L,為第0天添加提升約10.4% 之胞外多醣體產量。

Mushrooms contains many biologically active compounds such as polysaccharides, triterpenes, ergosterol, nucleotide, protein polysaccharides, nucleic acids and dietary fiber, which provide anti-tumor, immune regulation, lowering blood pressure and sugar, lowering cholesterol, anti-bacteria and anti-viruses, osteoporosis postponing and other health effects. The submerged culture of mushrooms is expected to reduce cultivation time, stabilize product quality, and realize the scale-up process. This study contains three parts.
In the first part, Pleurotus eryngii head part waste in a bag-log was collected and processed to yield mushroom hydrolysate powder (MHP). To test its functional use, a P. eryngii submerged culture was conducted. The prepared MHP (1.6%) and glucose (2%) were found to be the best sources for both mycelial biomass and exopolysaccharide (EPS) productions. A specific growth rate of 0.68 day-1, and a specific EPS yield of 9.55 g/g-dry-cell-weight were obtained under these conditions. It was also found that MHP gave higher mycelial biomass growth rate (2.05 g/L/day), and EPS yield (92 mg/L) than those of yeast extract. In 5-L scale-up fermentation with MHP as nitrogen source, high mycelial biomass growth rate (2.44 g/L/day) and EPS yield (312 mg/L) were obtained. In the solid state culture, P. eryngii hyphae growth rate in MHP agar (6.43�0.21 mm/day) was better than that in PDA (4.57�0.23 mm/day). By using PCA and cluster analysis, the major amino acids of MHP displayed a close similarity to those of P. eryngii mycelial hydrolysate powder.
In the second part, different LED lights were used in the P. eryngii culture. In the solid state culture, the red LED was found to be the most helpful for hyphae growth with its growth rate reaching 5.36 mm/day. In the submerged culture, the maximum EPS yield (455 mg/L) can be obtained when using blue LED, a 7.7-fold improvement as compared to the dark condition. It was found the high molecular weight EPS (1000~1200 kDa) fraction was produced when using red and yellow LEDs.
In the third part, several additives such as organic acid, alcohols, vegetable oils and surfactants were applied to the P. eryngii submerged culture. The stimulatory effects on mycelial biomass and EPS production were studied. It was observed that 2-propanol showed the best stimulatory effect for EPS production with its yield reaching 215 mg/L. A 3.47-fold EPS increase could be obtained when adding 0.5% of 2-propanol, whereas, no significant increase on P. eryngii mycelial biomass was found in the same addition. In contrast, the highest EPS yield (240 mg/L) was obtained when 5% of 2-propanol was added at day 2, accounting for a 10.4% EPS yield increase as compared to that without 2-propanol addition.
其他識別: U0005-2507201222392700
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.