Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3227
標題: 氧化石墨烯/聚苯胺奈米複合材料在染料敏化太陽能電池之應用研究
Graphene Oxide/ Polyaniline Nanocomposites for Dye Sensitized Solar Cells
作者: 許瑜珍
Hsu, Yu-Chen
關鍵字: 染料敏化太陽能電池;dye-sensitized solar cell;氧化石墨烯;聚苯胺;graphene oxide;polyaniline
出版社: 化學工程學系所
引用: 1.B. O''Regan and M. Grazel , Nature, 1991, 353, 737-740 . 2.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M Zakeeruddin and M. Gratzel, , Science, 2011, 334, 629-633 . 3.T. Miyasaka, M. Ikegami and Y. Kijitori, Journal of The Electrochemical Society, 2007, 154, A455-A461. 4.M. Grazel, I norganic Chemistry, 2005, 44, 6841-6851. 5.M. Grazel, Nature, 2001, 414, 338-344. 6.M. Grazel , Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14. 7.B. C. Sherman, W. B. Euler and R. R. Force, Journal of Chemical Education, 1994, 71, A94-A96. 8.J. Stejskal, Pure and Applied Chemistry, 2002, 74, 857-867. 9.H. Goto, H. Yoneyama, F. Togashi, R. Ohta, A. Tsujimoto, E. Kita and K. I. Ohshima, Journal of Chemical Education, 2008, 85, 1067-1070. 10.W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339 11.N. Yang, J. Zhai, D. Wang, Y. Chen and L. Jiang, ACS Nano, 2010, 4, 887-894. 12.Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H. M. Cheng, W. J. Zhang, I. Bello and S. T. Lee, ACS Nano, 2010, 4, 3482-3488. 13.J. Y. Lin, W. Y. Wang and Y. T. Lin, Surface & Coatings Technology, 2012. 14.Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo and X.Z. Zhao, ACS Nano, 2011, 5, 3795-3799. 15.G. Wang, W. Xing and S. Zhuo, Electrochimica Acta, 2012, 66, 151-157. 16.K. C. Huang, J. H. Huang, C.H. Wu, C.Y. Liu, H. W. Chen, C.W. Chu, J. T. Lin, C. L. Lin and K. C. Ho, Journal of Materials Chemistry, 2011, 21, 10384-10389. 17.C. Y. Liu, K. C. Huang, P. H. Chung, C.C. Wang, C.Y. Chen, R. Vittal, C. G. Wu, W. Y. Chiu, K. C. Ho, Journal of Power Sources, 2012, 217, 152-157. 18.N. Ikeda, K. Teshima and T. Miyasaka, Chem. Commun., 2006, 1733-1735. 19.C.P. Lee, L.Y. Lin, P. Y. Chen, R. Vittal and K.C. Ho, Journal of Materials Chemistry, 2010, 20, 3619-3625. 20.P. Hasin, M. A. A. Aviles and Y. Wu, Journal of Physical Chemistry C, 2010, 114, 15857-15861. 21.I. Ahmad, U. Khan and Y. K. Gun’ko, Journal of Materials Chemistry, 2011, 21, 16990-16996. 22.M. S. Akhtar, S. Kwon, F. J. Stadler and O.B. Yang, Nanoscale, 2013. 23.C. Y. Neo, J. Ouyang, Carbon, 2013, 54, 48-57. 24.Y. F. Chan, C. C. Wang and C. Y. Chen, Journal of Materials Chemistry A, 2013. 25.L. O. Xu, Y. L. Liu, K. G. Neoh, E. T. Kang and G. D. Fu, Macromolecular Rapid Communications, 2011, 32, 684-688. 26.G. L. Chen, S. M. Shau, T. Y. Juang, R. H. Lee, C.P. Chen, S. Y. Suen and R. J. Jeng, Langmuir, 2011, 27, 14563-14569. 27.S. Stankovich, R. D. Piner, S. T. Nguyen and R.S. Ruoff, Carbon, 2006, 44, 3342-3347. 28.A. Katoch, M. Burkhart, T. Hwang, S. S. Kim, Chemical Engineering Journal, 2012, 192, 262-268. 29.H. Liu, P. Xi, G. Xie, Y. Shi, F. Hou, L. Huang, F. Chen, Z. Zeng, C. Shao and J. Wang, The Journal of Physical Chemistry, 2012, 116, 3334-3341. 30.J. Xu, K. Wang, S. Z. Zu, B. H. Han and Z. Wei, ACS NANO, 2010, 4, 5019-5026. 31.G. Zhu, L. Pan, T. Lu, T. Xu and Z. Sun, Journal of Materials Chemitry, 2011, 21, 14869-14875. 32.C. C. Wang, J. G. Chen, K. C. Huang, H. W. Chen, Y. C. Wang, C.Y. Hsu, R. Vittal ,J. J. Lin and K.C. Ho, Journal of Power Sources, 2013, 239, 496-499. 33.M. H. Yeh, C. L. Sun, J. S. Su, L. Y. Lin, C. P. Lee, C.Y. Chen, C. G. Wu, R. Vittal and K. C. Ho, Carbon, 2012, 50, 4192-4202. 34.Q. Wang, Q. Yao, J. Chang and L. Chen, Journal of Materials Chemistry, 2012, 22, 17612-17618. 35.G. Wu, L. Li, J. H. Li, B. Q. Xu. Journal of Power Sources, 2006, 155, 118-127. 36.J. Gun, S. A. Kulkarni, W. Xiu, S. K. Batabyal, S. Sladkevich, P. V. Prikhodchenko, V. Gutkin and O. Lev, Electrochemistry Communications, 2012, 10, 108-110. 37.F. Li, F. Cheng, J. Shi, F. Cai, M. Liang, J. Chen, Journal of Power Sources,2007, 165, 911-915.
摘要: 
本研究製備氧化石墨烯/聚苯胺奈米複合材料應用於染料敏化太陽能電池,進行光伏特性的探討,包含電解質與對電極兩部份的研究:
第一部分的研究是利用原位聚合的方式使得氧化石墨烯/聚苯胺奈米複合材料薄膜自組裝沉積於氟掺雜氧化錫導電玻璃的表面,做為染料敏化太陽能電池的對電極,由掃瞄式電子顯微鏡觀察氧化石墨烯/聚苯胺複合材料成功沉積於氟掺雜氧化錫導電玻璃的表面,因此可增加電極的表面積,經由循環伏安與電化學阻抗頻譜分析證實氧化石墨烯/聚苯胺對電極有較高的電催化能力與較低的阻抗,以氧化石墨烯/聚苯胺對電極製作的染料敏化太陽能電池之電流密度(Jsc)為14.94 mA/cm2,光電轉換效率(η )為6.55%,接近於白金對電極製作的染料敏化太陽能電池。
第二部分的研究是將氧化石墨烯與聚苯胺奈米複合材料掺混至聚氧化乙烯之膠態電解質中,探討氧化石墨烯/聚苯胺複合材料中的氧化石墨烯與聚苯胺的比例對於DSSC光伏特性的影響。氧化石墨烯/聚苯胺奈米複合材料同時做為對電極的延伸材料,也做為還原I3-催化劑,因為具有較高的電催化活性與較高的I3-擴散係數,因此將氧化石墨烯/聚苯胺奈米複合材料加入膠態電解質中,有利於降低染料敏化太陽能電池之電荷傳遞的阻抗,在PANI、G2P、G4P及G40P奈米複合材料中,以G40P具有較高的電催化活性,因此加入G40P的聚氧化乙烯膠態電解質,其染料敏化太陽能電池之光電轉換效率為5.63%,相對於純聚氧化乙烯膠態電解質的染料敏化太陽能電池之光電轉換效率為4.05%。

In this study, graphene oxide (GO)/polyaniline(PANI) nanocomposites have been used for electrode and electrolyte in dye sensitized solar cells (DSSCs)..
In the fisrt part: GO/PANI nanocomposite thin film was coated on a FTO glass by in situ polymerization and and self-assembly process for counter electrode of DSSC. SEM images confirmed the formation of the composite film GO/PANI with higher surface area on the FTO coated substrate. High electro-catalytic ability and low charge transfer resistance of GO/PANI counter electrode were characterized through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The short-circuit current density (Jsc) and power-conversion efficiency (η) of the DSSC based on the GO/PANI counter electrode are about 14.94 mAcm-2 and 6.55%, which is comparable to the the cell with conventional Pt counter electrode .
In the second part: the photovoltaic (PV) properties of the DSSCs were enhanced by incorporating the GO/PANI nanocomposite into the PEO gel electrolyte. The GO/PANI nanocomposite materials serve simultaneously both as the extended electron transfer materials and as catalysts for the electrochemical reduction of I3-. Because of a higher catalytic activitiy and a higher diffusion coefficient of I3- , the incorporation of GO/PANI nanocomposite into the gel electrolyte is favorable for the reduction of the charge transfer resistances of DSSC. G40P has the best catalytic activitiy as compared to those of the PANI and GO/PANI nanocomposites (G2P and G4P). Therefore, better PV efficiency (5.63%) was observed for the DSSC incorporating GO/PANI nanocomposite G40P.
URI: http://hdl.handle.net/11455/3227
其他識別: U0005-2507201314381200
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.