Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3228
DC FieldValueLanguage
dc.contributor鄭紀民 教授zh_TW
dc.contributor.author林峙妙zh_TW
dc.contributor.authorLin, Chih-Miaoen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:31:30Z-
dc.date.available2014-06-06T05:31:30Z-
dc.identifierU0005-0307201317554500en_US
dc.identifier.citation[1] 申永順, 以高級氧化程序處理染整廢水之研發現況, 環保月刊, 第2卷, 2002. [2] H. Weidong, Q. Wei, W. Xiaohong, D. Xianbo, C. Long, J. Zhaohua, The photocatalytic properties of bismuth oxide films prepared through the sol–gel method, Thin Solid Films, 515 (2007) 5362-5365. [3] J. Xu, Y. Ao, D. Fu, C. Yuan, Synthesis of Bi2O3–TiO2 composite film with high-photocatalytic activity under sunlight irradiation, Applied Surface Science, 255 (2008) 2365-2369. [4] S. Rengaraj, X.Z. Li, P.A. Tanner, Z.F. Pan, G.K.H. Pang, Photocatalytic degradation of methylparathion—An endocrine disruptor by Bi3+-doped TiO2, Journal of Molecular Catalysis A: Chemical, 247 (2006) 36-43. [5] J. Wang, L. Jing, L. Xue, Y. Qu, H. Fu, Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution, Journal of Hazardous Materials, 160 (2008) 208-212. [6] U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 48 (2003) 53-229. [7] T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita, Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films, Applied Surface Science, 200 (2002) 21-26. [8] K.L. Schulte, P.A. DeSario, K.A. Gray, Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light, Applied Catalysis B: Environmental, 97 (2010) 354-360. [9] W. Li, C. Liu, Y. Zhou, Y. Bai, X. Feng, Z. Yang, L. Lu, X. Lu, K.-Y. Chan, Enhanced Photocatalytic Activity in Anatase/TiO2(B) Core−Shell Nanofiber, The Journal of Physical Chemistry C, 112 (2008) 20539-20545. [10] M. Xie, L. Jing, J. Zhou, J. Lin, H. Fu, Synthesis of nanocrystalline anatase TiO2 by one-pot two-phase separated hydrolysis-solvothermal processes and its high activity for photocatalytic degradation of rhodamine B, Journal of Hazardous Materials, 176 (2010) 139-145. [11] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chemical Reviews, 93 (1993) 341-357. [12] 馬振基, 奈米材料科技原理與應用, 五南圖書股份有限公司, 2003. [13] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49 (2011) 741-772. [14] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. [15] O. Harizanov, A. Harizanova, Development and investigation of sol–gel solutions for the formation of TiO2 coatings, Solar Energy Materials and Solar Cells, 63 (2000) 185-195. [16] B.L. Bischoff, M.A. Anderson, Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2), Chemistry of Materials, 7 (1995) 1772-1778. [17] K.-J. Kim, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, Characteristics of Low-Temperature Annealed TiO2 Films Deposited by Precipitation from Hydrolyzed TiCl4 Solutions, Chemistry of Materials, 14 (2002) 1042-1047. [18] H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles, Chemistry of Materials, 7 (1995) 663-671. [19] M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol, The Journal of Physical Chemistry B, 106 (2002) 10674-10679. [20] F.B. Li, X.Z. Li, The enhancement of photodegradation efficiency using Pt–TiO2 catalyst, Chemosphere, 48 (2002) 1103-1111. [21] Y. Mizukoshi, Y. Makise, T. Shuto, J. Hu, A. Tominaga, S. Shironita, S. Tanabe, Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol, Ultrasonics Sonochemistry, 14 (2007) 387-392. [22] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, Journal of Physics and Chemistry of Solids, 63 (2002) 1909-1920. [23] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 257-261. [24] T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita, K. Asai, Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies, Journal of Applied Physics, 93 (2003) 5156-5160. [25] W. Ho, J.C. Yu, S. Lee, Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chemical Communications, 0 (2006) 1115-1117. [26] T.C. Jagadale, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B. Kale, S.B. Ogale, N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol−Gel Method, The Journal of Physical Chemistry C, 112 (2008) 14595-14602. [27] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, Journal of Photochemistry and Photobiology A: Chemistry, 85 (1995) 247-255. [28] Y. Bessekhouad, D. Robert, J.V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catalysis Today, 101 (2005) 315-321. [29] Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, H. Li, Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase, The Journal of Physical Chemistry C, 112 (2008) 6258-6262. [30] C. Shifu, C. Lei, G. Shen, C. Gengyu, The preparation of coupled WO3/TiO2 photocatalyst by ball milling, Powder Technology, 160 (2005) 198-202. [31] J. Fernandez, J. Kiwi, J. Baeza, J. Freer, C. Lizama, H.D. Mansilla, Orange II photocatalysis on immobilised TiO2: Effect of the pH and H2O2, Applied Catalysis B: Environmental, 48 (2004) 205-211. [32] 林麗娟, X 光繞射原理及其應用, 工業材料雜誌, 2004, 86 期. [33] 陳力俊等, 材料電子顯微鏡學, 科儀叢書, 1994. [34] 汪建民, 材料分析, 中國材料科學學會, 2001. [35] 葉玉堂, 紫外光/可見光吸收光譜儀, 儀器總覽 4 化學分析儀器, 1998. [36] 楊家銘, 奈米孔洞材料之物理吸脫附分析, 科儀新知, 2005. [37] R.A. Spurr, H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Analytical Chemistry, 29 (1957) 760-762.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3228-
dc.description.abstract本研究以直接水解法結合水熱處理成功製備出Bi2O3/TiO2複合奈米光觸媒,探討Bi/Ti莫耳比例、水熱溫度、水熱時間、鍛燒溫度和鍛燒時間的製備條件對觸媒的影響,以及利用光催化反應效能找出製備Bi2O3/TiO2光觸媒最適化條件。所使用的分析儀器包括XRD、SEM、TEM、BET及UV-visble光譜儀,對奈米光觸媒之晶型結構、表面形貌進行特性分析。 由研究結果顯示Bi2O3/TiO2粒徑大小介於8 ~ 31 nm之間,比表面積介於81 ~ 180 m2/g之間,將所製備的Bi2O3/TiO2光觸媒於可見光照射下進行甲基橙的光分解實驗,並探討H2O2添加量對甲基橙光分解之影響。由降解甲基橙的結果得知,製備Bi2O3/TiO2最佳條件為1.0 mole % Bi/Ti、水熱處理溫度及時間分別為200°C及12小時,再鍛燒溫度為200°C處理0.5小時具有最佳可見光之光催化活性及其降解率可達61%,而H2O2最佳添加量為0.2 ml,可將光催化效率從61%提升至82%,因此可證明Bi2O3修飾TiO2能增加TiO2光觸媒之光催化活性 。zh_TW
dc.description.abstractThe modified photocatalyst Bi2O3/TiO2 has been synthesized by the combination of direct hydrolysis method and hydrothermal treatment. The investigated parameters include molar ratio of Bi/Ti content, hydrothermal temperature, hydrothermal time, calcination temperature and time. The characteristic analysis of the nanoparticles Bi2O3/TiO2 were performed by XRD、SEM、TEM、BET and UV-visble technigues. The results show that the particle size of the prepared Bi2O3/TiO2 is from 8 nm to 31 nm, and the surface area of catalysts is between 81 m2/g to 180 m2/g. The photocatalytic activity was measured by the decomposition of methyl orange under the irradiation of common visible light. In addition, the effect of the addition of H2O2 on photocatalytic was also discussed. The best photocatalytic activity was reached to 61% with the Bi/Ti molar ratio of 1.0%, the hydrothermal temperature of 200°C, the hydrothermal time for 12h, the calcination temperature and time at 200°C and 0.5 h, respectively. The optimum volume of the added H2O2 was 0.2 ml. The photocatalytic efficiency has been increased from 61% to 82%. Thus, this study has demonstrated that the TiO2 modified by Bi2O3 can enhance the photocatalytic activity under visible light.en_US
dc.description.tableofcontents摘要-----------------------------------------------------i Abstract-------------------------------------------------ii 致謝-----------------------------------------------------iii 目錄-----------------------------------------------------iv 表目錄---------------------------------------------------vi 圖目錄---------------------------------------------------vii 第一章 緒論----------------------------------------------1 1-1 前言--------------------------------------------------1 1-2 研究動機與目的----------------------------------------1 第二章 文獻回顧------------------------------------------3 2-1 二氧化鈦光觸媒----------------------------------------3 2-2 光觸媒基本原理----------------------------------------5 2-2-1 光催化反應------------------------------------------5 2-2-2 光催化反應機制--------------------------------------6 2-3 二氧化鈦奈米粉體製備方法------------------------------8 2-3-1 溶膠-凝膠法-----------------------------------------8 2-3-2 沉澱法----------------------------------------------10 2-3-3 水熱合成法------------------------------------------11 2-3 二氧化鈦光觸媒的改質----------------------------------13 2-3-1 掺雜金屬元素----------------------------------------13 2-3-2 掺雜非金屬元素--------------------------------------15 2-3-3 複合半導體------------------------------------------16 第三章 實驗設備與方法------------------------------------19 3-1 實驗藥品與儀器----------------------------------------19 3-2 觸媒之製備--------------------------------------------20 3-2-1 二氧化鈦之製備--------------------------------------20 3-2-2 複合光觸媒之製備------------------------------------21 3-3 甲基橙光催化活性測試----------------------------------23 3-3-1 甲基橙----------------------------------------------23 3-3-2 光催化反應裝置--------------------------------------25 3-3-3 光催化實驗步驟--------------------------------------26 3-3-4 添加H2O2於甲基橙光催化反應--------------------------26 3-4 實驗儀器----------------------------------------------27 3-4-1 粉末X光繞射儀---------------------------------------27 3-4-2 場發射掃描式電子顯微鏡------------------------------27 3-4-3 穿透式電子顯微鏡------------------------------------28 3-4-4 紫外光/可見光吸收光譜儀-----------------------------28 3-4-5 比表面積及孔隙度分析儀------------------------------29 第四章 結果與討論----------------------------------------34 4-1 不同Bi含量對二氧化鈦之特性分析------------------------34 4-2 不同水熱溫度對1.0 mole % Bi2O3/TiO2之特性分析---------51 4-3 不同水熱時間對1.0 mole % Bi2O3/TiO2之特性分析---------62 4-4 不同鍛燒溫度對1.0 mole % Bi2O3/TiO2之特性分析---------71 4-5 不同鍛燒時間對1.0 mole % Bi2O3/TiO2之特性分析---------80 4-6 H2O2添加量對甲基橙的影響-----------------------------89 第五章 結論----------------------------------------------91 參考文獻--------------------------------------------------93 附 錄 JCPDS資料庫----------------------------------------96zh_TW
dc.language.isozh_TWen_US
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307201317554500en_US
dc.subjectBi2O3修飾TiO2光觸媒zh_TW
dc.subjectBi2O3 modified TiO2 photocatalyticen_US
dc.subject水熱法zh_TW
dc.subject甲基橙zh_TW
dc.subject光催化zh_TW
dc.subject可見光zh_TW
dc.subjecthydrothermal methoden_US
dc.subjectmethyl orangeen_US
dc.subjectphotocatalysisen_US
dc.subjectvisible lighten_US
dc.title氧化鉍修飾二氧化鈦光觸媒及其在可見光下之光催化應用zh_TW
dc.titleTiO2 photocatalyst modified by Bi2O3 and its photocatalytic application under visible lighten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.