Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3230
標題: 混合基材薄膜應用於二氧化碳/甲烷分離之研究
Separation of CO2 and CH4 Using Mixed Matrix Membranes
作者: 王維菁
Wang, Wei-Jing
關鍵字: 混合基材薄膜;Mixed matrix membrane;醋酸纖維素;四氧化三鐵;香蕉皮顆粒;氣體分離;Cellulose acetate;Iron oxide;Banana peel particles;Gas separation
出版社: 化學工程學系所
引用: [1] T. Graham, On the absorption and dialytic separation of gases by colloid septa, Philosophical Transactions,32 (1866) 401. [2] A. Loeb, S. Sourrirajan, Sea water demineralization by means of an osmotic membrane, Advances in Chemistry Series,38 (1962) 117. [3] P.K. Gantzel, U. Merten, Gas separation high-flux cellulose acetate membrane, Industrial and Engineering Chemistry,9 (1970) 331. [4] C.Y. Liang, P. Uchytil, R. Petrychkovych, Y.C. Lai, K. Friess, M. Sipek, M.M. Reddy, S.Y. Suen, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes, Separation and Purification Technology, 92 (2012) 57. [5] 蕭盛文, PMMA氣體分離膜的物理老化行為之探討, 碩士論文, 中原大學化學工程研究所, 桃園, 台灣 (2006). [6] C.A. Scholes, S.E. Kentish, G.W. Stevens, Carbon dioxide separation through polymeric membrane systems for flue gas applications, Recent Patents on Chemical Engineering, 1 (2008) 52. [7] 劉得成, PMMA/zeolite 4A複合薄膜之氣體分離, 碩士論文, 中原大學化學工程研究所, 桃園, 台灣 (2004). [8] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation : a review/state of the art, Industrial and Engineering Chemistry Research, 48 (2009) 4638. [9] D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review, Journal of Industrial and Engineering Chemistry, 19 (2013) 375. [10] C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel, 96 (2012) 15. [11] 趙婵, 氣體分離複合膜塗層材料—改性矽橡膠的研製, 碩士論文, 大連理工大學化學工程研究所, 中國 (2007). [12] P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Separation and Purification Technology, 81 (2011) 243. [13] J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for separation, Journal of Membrane Science, 314 (2008) 123. [14] M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Rahmati, Performance studies of mixed matrix membranes for gas separation : a review,Separation and Purification Technology, 75 (2010) 229. [15] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science, 62 (1991) 165. [16] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390. [17] Y. Zhang, J. Sunarso, S. Liu,R. Wang, Current status and development of membranes for CO2/CH4 separation : a review, International Journal of Greenhouse Gas Control,12 (2013) 84. [18] M. Naghsh, M. Sadeghi, A. Moheb, M.P. Chenar,M. Mohagheghian, Separation of ethylene/ethane and propylene/propane by cellulose acetate nanocomposite membranes, Journal of Membrane Science,423 (2012) 97. [19] 翁子翔, 高分子薄膜與多層複合薄膜氣體分離特性之研究, 碩士論文, 國立中興大學環境工程研究所, 台中, 台灣 (2010). [20] N.K. Acharya, V. Kulshrestha, K. Awasthi, A.K. Jain, M. Singh, Y.K. Vijay, Hydrogen separation in doped and blend polymer membranes, International Journal of Hydrogen Energy, 33 (2008) 327. [21] 梁家毓, 以聚醚砜/蒙脫土複合薄膜為三明治結構離子液體薄膜之支撐層應用於氣體輸送, 碩士論文, 國立中興大學化學工程研究所, 台中, 台灣 (2011). [22] A. Mushtaq, H.B. Mukhtar, A.M. Shariff, H.A. Mannan, A review : development of polymeric blend membrane for removal of CO2 from natural gas, International Journal of Engineering & Technology, 13 (2013) 2. [23] 葉安義, 行政院國家科學委員會奈米食品科技市場研究報告, 國立台灣大學食品科技研究所, 台北, 台灣 (2010). [24] R.Y. Lin, B.S. Chen, G.L. Chen, J.Y. Wu, H.C. Chiu, S.Y. Suen, Preparation of porous PMMA/Na+-montmorillonite cation-exchange membranes for cationic dye adsorption, Journal of Membrane Science, 326 (2009) 117. [25] M. Sivakumar, R. Malaisamy, C.J. Sajitha, D. Mohan, V. Mohan, R. Rangarajan, Preparation and performance of cellulose acetate-poly- urethane blend membranes and their applications, Journal of Membrane Science, 169 (2000) 215. [26] S.J. Lue, J.S. Ou, C.H. Kuo, H.Y. Chen, T.H. Yang, Pervaporative separation of azeotropic methanol/toluene mixtures inpolyurethane- poly(dimethylsiloxane) (PU–PDMS) blend membranes: correlation with sorption and diffusion behaviors in a binarysolution system, Journal of Membrane Science, 347 (2010) 108. [27] A. Bos, I. Punt, H. Strathmann, M. Wessling, Suppression of gas separation membrane plasticization by homogeneous polymer blending, Journal of Membrane Science, 47 (2001) 5. [28] L.M. Robeson, Polymer Blends in Membrane Transport Processes, Industrial and Engineering ChemistryResearch, 49 (2010) 11859. [29] M. Sadrzadeh, M. Amirilargani, K. Shahidi,T. Mohammadi, Gas permeation through a synthesized composite PDMS/PES membrane, Journal of Membrane Science, 342 (2009) 236. [30] F. Wu, L. Li, Z. Xu, S. Tan,Z. Zhang, Transport study of pure and mixed gases through PDMS membrane, Chemical Engineering Journal, 117 (2006) 51. [31] M. Sadrzadeh, K. Shahidi, T. Mohammadi, Effect of operating parameters on pure and mixed gas permeationproperties of a synthesized composite PDMS/PA membrane, Journal of Membrane Science, 342 (2009) 327. [32] M. Xiao,J. Zhou, Y. Zhang, X. Hu, S. Li, Pertraction performance of phenol through PDMS/PVDF composite membrane in the membrane aromatic recovery system (MARS), Journal of Membrane Science, 428 (2013) 172. [33] P. Li, H.Z. Chen, T.S. Chung, The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollowfibermembranesforCO2/N2 and O2/N2 separation, Journal of Membrane Science, 434 (2013) 18. [34] S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of misciblepolymer blends withinterpenetration networks, Polymer, 49 (2008) 6. [35] W.F. Yong, F.Y. Li, Y.C. Xiao, P. Li, K.P. Pramoda, Y.W. Tong, T.S. Chung, Molecular engineering of PIM-1/Matrimid blend membranes for gas separation, Journal of Membrane Science, 407 (2012) 47. [36] F. Dorosti, M.R. Omidkhah, M.Z. Pedram, F. Moghadam, Fabrication and characterization of polysulfone/polyimide–zeolite mixed matrix membrane for gas separation, Chemical Engineering Journal, 171 (2011) 1469. [37] J.R. Memon, S.Q. Memon, M.I. Bhanger,G.Z. Memon, A.E. Turki, G.C. Allen, Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal, Colloids and Surfaces B: Biointerfaces, 66 (2008) 260. [38] 羅梓宏, 酸纖維素/二氧化鈦奈米顆粒混合基材薄膜應用於二氧化碳和甲烷的分離, 碩士論文, 國立中興大學化學工程研究所, 台中, 台灣 (2012). [39] M. Anson, J. Marchese, E. Garis, N. Ochoa, C. Pagliero, ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Science, 243 (2004) 19-28. [40] H. Cong, J. Zhang, M. Radosz, Y. Shen, Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation, Journal of Membrane Science, 294 (2007) 178-185. [41] M. Sadeghi, G. Khanbabaei, A. H. S. Dehaghani, M. Sadeghi, M. A. Aravand, M. Akbarzade, S. Khatti, Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes, Journal of Membrane Science, 322 (2008) 423-428. [42] M. Sadeghi, M. A. Semsarzadeh, H. Moadel, Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles, Journal of Membrane Science, 331 (2009) 21-30. [43] D. Şen, H. Kalıpcılar, L. Yilmaz, Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes, Journal of Membrane Science, 303 (2007) 194-203. [44] E. Karatay, H. Kalıpcılar, L. Yılmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes, Journal of Membrane Science,364 (2010) 75-81. [45] A.F. Ismail, R.A. Rahim,W.A.W.A. Rahman, Characterization of polyethersulfone/MatrimidR 5218 miscible blend mixed matrix membranes for O2/N2 gas separation, Separation and Purification Technology, 63 (2008) 200-206. [46] B. Zornozaa, O. Esekhileb, W. J. Korosb, C. Telleza, J. Coronasa, Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation, Separation and Purification Technology,77 (2011) 137-145. [47] S. S. Hosseini, Y. Lia, T.-S. Chung, Y. Liu, Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles, Journal of Membrane Science, 302 (2007) 207-217. [48] B. Zornoza, C. Tellez, J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation, Journal of Membrane Science,368 (2011) 100-109. [49] M.A. Aroon, A.F. Ismail, M.M. Montazer-Rahmatia, T. Matsuura, Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes, Journal of Membrane Science,364 (2010) 309-317. [50] F. Moghadam, M.R. Omidkhah, E. Vasheghani-Farahani, M.Z. Pedram, F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes, Separation and Purification Technology,77 (2011) 128-136. [51] Y. Zhang, K.J. Balkus Jr., I.H. Musselman, J.P. Ferraris, Mixed-matrix membranes composed of MatrimidR and mesoporous ZSM-5 nanoparticles, Journal of Membrane Science, 325 (2008) 28-39. [52] W.A.W. Rafizah, A.F. Ismail, Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve–polysulfone mixed matrix membrane, Journal of Membrane Science, 307 (2008) 53-61. [53] P. Gorgojo, S. Uriel, C. Tellez, J. Coronas, Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation, Microp. Mesop. Mater. 115 (2008) 85-92. [54] R.T. Adams, J.-S. Lee, T.-H. Bae, J.K. Ward, J.R. Johnson, C.W. Jones, S. Nair, W.J. Koros, CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes, Journal of Membrane Science, 367 (2011) 197. [55] S. Hassanajili, E. Masoudi, G. Karimi, M. Khademi, Mixed matrix membranes based on polyetherurethane and polyesterurethanecontaining silica nanoparticles for separation of CO2/CH4 gases, Separation and Purification Technology, 116 (2013) 1. [56] M. Rezakazemi, K. Shahidi, T. Mohammadi, Hydrogen searation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, International Journal of hydrogen energy, 37 (2012)14576.
摘要: 
本研究利用醋酸纖維素(cellulose acetate, CA)為基材,摻入顆粒,製備為混合基材薄膜(mixed matrix membrane, MMM),應用於二氧化碳和甲烷的分離。所摻入的顆粒分別為無機奈米顆粒Fe3O4(50 nm)及有機微米香蕉皮顆粒(2μm)。所獲得的混合基材薄膜,分別以TGA、DSC、SEM、TEM分析薄膜結構。分析結果發現,當顆粒含量≥3wt.%時,顆粒聚集現象越加明顯,且造成界面空隙。當加入1 wt.%顆粒時,CO2/CH4的選擇率明顯提升,從16 (純CA薄膜)變成36 (CA/Fe3O4)和32 (CA/Banana Peel Particles)。當加入量高於1 wt.%,氣體選擇率開始下降。本研究所製備的摻混奈米顆粒混合基材薄膜可分為兩種型態:理想型態(≤2 wt.%)和界面空隙型態(>2 wt.%),尤其奈米顆粒摻混比例增加時,聚集現象漸趨嚴重,造成界面空隙的形成,導致氣體滲透率上升和氣體選擇率下降的結果。

Cellulose acetate (CA)-based mixed matrix membranes (MMMs) with the incorporation of inorganic fillers (sphericalIron oxide,Fe3O4 nanoparticles) and organic fillers Banana peel particles wereprepared in this study.The resulting MMMs were characterized by TGA, DSC, SEM, and TEM. Itwas found that inorganic filler agglomeration became more serious at higher-filler-content (≥ 3wt.%)MMMs. CO2 and CH4permeabilitieswere measured for these prepared MMMs. The CO2/CH4 selectivity increased from 16 (pure CA membrane)to a maximum value of 36(1 wt.% Fe3O4 MMM) and 32 (1 wt.% Banana peel paricles MMM), and then decreased for the Fe3O4 weight percentages >1. The membrane morphology may be divided into two cases : ideal morphology ( ≤ 2 wt.%) and interface voids ( >2 wt.%). The formation of interface voids and membrane defects in MMMscontributed to higher gas permeabilities but lower gas selectivity.
URI: http://hdl.handle.net/11455/3230
其他識別: U0005-1208201316263300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.