Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYu-Chen Tsaien_US
dc.contributor.authorLin, En-Ruen_US
dc.identifier.citation1. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669. 2. Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-6. 3. Zhou, M., Y. Zhai, and S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical Chemistry, 2009. 81(14): p. 5603-5613. 4. Tang, L., et al., Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials, 2009. 19(17): p. 2782-2789. 5. Alwarappan, S., et al., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. The Journal of Physical Chemistry C, 2009. 113(20): p. 8853-8857. 6. Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2009. 110(1): p. 132-145. 7. Plotz Ph, K.R.P., ACute effects of aspirin and acetaminophen on renal function. Archives of Internal Medicine, 1981. 141(3): p. 343-348. 8. Matzke, G.R., Nonrenal toxicities of acetaminophen, aspirin, and nonsteroidal anti-inflammatory agents. American Journal of Kidney Diseases, 1996. 28(1, Supplement 1): p. S63-S70. 9. Rankin, G.O., et al., Nephrotoxic potential of 2-amino-5-chlorophenol and 4-amino-3-chlorophenol in Fischer 344 rats: comparisons with 2- and 4-chloroaniline and 2- and 4-aminophenol. Toxicology, 1996. 108(1–2): p. 109-123. 10. Olaleye, M.T. and B.T.J. Rocha, Acetaminophen-induced liver damage in mice: Effects of some medicinal plants on the oxidative defense system. Experimental and Toxicologic Pathology, 2008. 59(5): p. 319-327. 11. Yin, H., et al., Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochimica Acta, 2010. 55(23): p. 7102-7108. 12. Chu, Q., et al., Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Analytica Chimica Acta, 2008. 606(2): p. 246-251. 13. Sirajuddin, et al., Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007. 68(3): p. 747-751. 14. Li, L., et al., Determination of Paracetamol Based on its Quenching Effect on the Photoluminescence of CdTe Fluorescence Probes. Journal of Fluorescence, 2012. 22(2): p. 591-596. 15. Abu-Qare, A.W. and M.B. Abou-Donia, A validated HPLC method for the determination of pyridostigmine bromide, acetaminophen, acetylsalicylic acid and caffeine in rat plasma and urine. Journal of Pharmaceutical and Biomedical Analysis, 2001. 26(5–6): p. 939-947. 16. Su, W.Y. and S.H. Cheng, Electrochemical Oxidation and Sensitive Determination of Acetaminophen in Pharmaceuticals at Poly (3, 4‐ethylenedioxythiophene)‐Modified Screen‐Printed Electrodes. Electroanalysis, 2010. 22(6): p. 707-714. 17. Umasankar, Y., et al., Effective determination of acetaminophen present in pharmaceutical drug using functionalized multi-walled carbon nanotube film. Int. J. Electrochem. Sci, 2012. 7: p. 484-498. 18. Kang, X., et al., A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta, 2010. 81(3): p. 754-759. 19. Sanghavi, B.J. and A.K. Srivastava, Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochimica Acta, 2010. 55(28): p. 8638-8648. 20. Wabaidur, S.M., Z.A. Alothman, and M.R. Khan, A rapid method for the simultaneous determination of l-ascorbic acid and acetylsalicylic acid in aspirin C effervescent tablet by ultra performance liquid chromatography–tandem mass spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 108(0): p. 20-25. 21. do Socorro Maia Quintino, M., et al., Amperometric determination of acetylsalicylic acid in drugs by batch injection analysis at a copper electrode in alkaline solutions. Talanta, 2002. 58(5): p. 943-949. 22. Batchelor-McAuley, C. and G.G. Wildgoose, The influence of substrate effects when investigating new nanoparticle modified electrodes exemplified by the electroanalytical determination of aspirin on NiO nanoparticles supported on graphite. Electrochemistry Communications, 2008. 10(8): p. 1129-1131. 23. Muralidharan, B., et al., Voltammetric determination of analgesics using a montmorillonite modified electrode. Applied Clay Science, 2008. 42(1–2): p. 206-213. 24. Zhang, W.-D., et al., Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. Journal of Solid State Electrochemistry, 2010. 14(9): p. 1713-1718. 25. 梁秀美, 市面上血糖機之比較. 中華民國糖尿病衛教學會, 2012. 26. 潭健民, 2011年美國糖尿病協會 (ADA)糖尿病診療標準指引摘要). 台灣醫界, 2011. 54: p. 3. 27. 謝振傑, 光纖生物感測器. 物理雙月刊, 2006. 28. 生物化學-醣類介紹. 生物化學實習. 29. He, H., et al., In situ nanoplasmonic probing of enzymatic activity of monolayer-confined glucose oxidase on colloidal nanoparticles. Analytical chemistry, 2013. 30. Qiu, H. and X. Huang, Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. Journal of Electroanalytical Chemistry, 2010. 643(1–2): p. 39-45. 31. Chang, H.-W., et al., Preparation of platinum/carbon nanotube in aqueous solution by femtosecond laser for non-enzymatic glucose determination. Sensors and Actuators B: Chemical, 2013. 183(0): p. 34-39. 32. Fang, B., et al., A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres. Sensors and Actuators B: Chemical, 2011. 155(1): p. 304-310. 33. Pan, D., et al., Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at copper-modified gold electrode. Sensors and Actuators B: Chemical, 2005. 104(1): p. 68-74. 34. 王宗興, 分子辨識與感測器. 2011. 35. McMahon, G., Chemical Sensors and Biosensors, in Modern Sensors Handbook. 2010, ISTE. p. 245-303. 36. Cunningham, A.J. and R.H. Austin, Introduction to Bioanalytical Sensors. Physics Today, 1999. 52(6): p. 64. 37. Su, L., et al., Microbial biosensors: A review. Biosensors and Bioelectronics, 2011. 26(5): p. 1788-1799. 38. Shah, J. and E. Wilkins, Electrochemical Biosensors for Detection of Biological Warfare Agents. Electroanalysis, 2003. 15(3): p. 157-167. 39. Thévenot, D.R., et al., Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 2001. 16(1–2): p. 121-131. 40. D''Orazio, P., Biosensors in clinical chemistry. Clinica Chimica Acta, 2003. 334(1–2): p. 41-69. 41. Mehrvar, M. and M. Abdi, Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors. Analytical Sciences, 2004. 20(8): p. 1113-1126. 42. 許嘉伊, 全球特用酵素市場分析. 台灣經濟研究院生物科技產業中心, 2007. 43. 洪爭坊、郭肇凱、張正英, 淺談酵素. 台中區農情月刊. 44. Barceló, D. and M. Hennion, Techniques and instrumentation in analytical chemistry. Techniques and instrumentation in analytical chemistry, 1997. 19. 45. Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 2004. 35(2–3): p. 126-139. 46. Tischer, W. and F. Wedekind, Immobilized Enzymes: Methods and Applications, in Biocatalysis - From Discovery to Application, W.-D. Fessner, et al., Editors. 1999, Springer Berlin Heidelberg. p. 95-126. 47. Gamati, S., J.H.T. Luong, and A. Mulchandani, A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosensors and Bioelectronics, 1991. 6(2): p. 125-131. 48. Jones, T.P. and M.D. Porter, Optical pH sensor based on the chemical modification of a porous polymer film. Analytical Chemistry, 1988. 60(5): p. 404-406. 49. Zhujun, Z. and W.R. Seitz, Optical sensor for oxygen based on immobilized hemoglobin. Analytical Chemistry, 1986. 58(1): p. 220-222. 50. Gill, I. and A. Ballesteros, Encapsulation of Biologicals within Silicate, Siloxane, and Hybrid Sol−Gel Polymers:  An Efficient and Generic Approach. Journal of the American Chemical Society, 1998. 120(34): p. 8587-8598. 51. Serban, S. and N. El Murr, Use of Ferricinium Exchanged Zeolite for Mediator Stabilization and Analytical Performances Enhancement of Oxidase-Based Carbon Paste Biosensors. Analytical Letters, 2003. 36(9): p. 1739-1753. 52. Parellada, J., et al., A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: binder paste electrodes. Biosensors and Bioelectronics, 1997. 12(4): p. 267-275. 53. Tsai, Y.-C., J.-D. Huang, and C.-C. Chiu, Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube–alcohol dehydrogenase biocomposite. Biosensors and Bioelectronics, 2007. 22(12): p. 3051-3056. 54. Li, Y. and X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2006. 115(1): p. 134-139. 55. Yu, J., S. Liu, and H. Ju, Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol–gel membrane. Biosensors and Bioelectronics, 2003. 19(4): p. 401-409. 56. Salimi, A., R.G. Compton, and R. Hallaj, Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Analytical Biochemistry, 2004. 333(1): p. 49-56. 57. Tsai, Y.C., S.C. Li, and S.W. Liao, Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose. Biosensors & bioelectronics, 2006. 22(4): p. 495-500. 58. Vidal, J.C., E. Garcı́a, and J.R. Castillo, In situ preparation of overoxidized PPy/oPPD bilayer biosensors for the determination of glucose and cholesterol in serum. Sensors and Actuators B: Chemical, 1999. 57(1–3): p. 219-226. 59. Cabral, J. and J. Kennedy, Covalent and coordination immobilization of proteins. Bioprocess technology, 1991. 14: p. 73. 60. Shen, J., L. Dudik, and C.-C. Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B: Chemical, 2007. 125(1): p. 106-113. 61. 62. Katz, E., et al., Glucose oxidase electrodes via reconstitution of the apo-enzyme: tailoring of novel glucose biosensors. Analytica Chimica Acta, 1999. 385(1–3): p. 45-58. 63. Srinivasan, C., Graphene-Mother of all graphitic materials. Current science, 2007. 92(10): p. 1338-1339. 64. Shioyama, H. and T. Akita, A new route to carbon nanotubes. Carbon, 2003. 41(1): p. 179-180. 65. Pumera, M., et al., Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 2010. 29(9): p. 954-965. 66. Chae, H.K., et al., A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004. 427(6974): p. 523-527. 67. Zhang, Y., et al., Experimental observation of the quantum Hall effect and Berry''s phase in graphene. Nature, 2005. 438(7065): p. 201-204. 68. Balandin, A.A., et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907. 69. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669. 70. Gilje, S., et al., A Chemical Route to Graphene for Device Applications. Nano Letters, 2007. 7(11): p. 3394-3398. 71. Wang, Y., et al., Hydrogen storage in a Ni–B nanoalloy-doped three-dimensional graphene material. Energy & Environmental Science, 2011. 4(1): p. 195-200. 72. Chang, H.-H., et al., Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon, 2012. 50(6): p. 2331-2336. 73. Shao, Y., et al., Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2010. 22(10): p. 1027-1036. 74. Chen, D., L. Tang, and J. Li, Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010. 39(8): p. 3157-3180. 75. Wu, J.-F., M.-Q. Xu, and G.-C. Zhao, Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing. Electrochemistry Communications, 2010. 12(1): p. 175-177. 76. Guo, S., et al., Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano, 2010. 4(7): p. 3959-3968. 77. Zhou, X., et al., Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chemical Communications, 2010. 46(21): p. 3663-3665. 78. Feng, X.-M., et al., One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Advanced Functional Materials, 2011. 21(15): p. 2989-2996. 79. Staudenmaier, L., Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft, 1898. 31(2): p. 1481-1487. 80. Brodie, B., Sur le poids atomique du graphite. Ann. Chim. Phys, 1860. 59(7). 81. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339. 82. Steurer, P., et al., Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromolecular Rapid Communications, 2009. 30(4-5): p. 316-327. 83. Fan, X., et al., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Advanced Materials, 2008. 20(23): p. 4490-4493. 84. Zhou, Y., et al., Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009. 21(13): p. 2950-2956. 85. Murugan, A.V., T. Muraliganth, and A. Manthiram, Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. Chemistry of Materials, 2009. 21(21): p. 5004-5006. 86. Sundaram, R.S., et al., Electrochemical Modification of Graphene. Advanced Materials, 2008. 20(16): p. 3050-3053. 87. Zhou, M., et al., Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry – A European Journal, 2009. 15(25): p. 6116-6120. 88. Fernández-Merino, M.J., et al., Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. The Journal of Physical Chemistry C, 2010. 114(14): p. 6426-6432. 89. Su, C.-Y., et al., Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano, 2010. 4(9): p. 5285-5292. 90. Zhu, C., et al., Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano, 2010. 4(4): p. 2429-2437. 91. Fernandez-Merino, M., et al., Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C, 2010. 114(14): p. 6426-6432. 92. Zhang, J., et al., Reduction of graphene oxide vial-ascorbic acid. Chemical Communications, 2010. 46(7): p. 1112-1114. 93. Gao, J., et al., Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chemistry of Materials, 2010. 22(7): p. 2213-2218. 94. Karrer, P., The Chemistry of Vitamins A and C. Chemical Reviews, 1934. 14(1): p. 17-30. 95. Natta, G., G. Mazzanti, and P. Corradini, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Rend, 1958. 25(3). 96. Chiang, C., et al., Electrical conductivity in doped polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101. 97. Diaz, A., K.K. Kanazawa, and G.P. Gardini, Electrochemical polymerization of pyrrole. Journal of the Chemical Society, Chemical Communications, 1979(14): p. 635-636. 98. Harsányi, G., Polymer films in sensor applications: technology, materials, devices and their characteristics. 1995: CRC PressI Llc. 99. Guimard, N.K., N. Gomez, and C.E. Schmidt, Conducting polymers in biomedical engineering. Progress in Polymer Science, 2007. 32(8–9): p. 876-921. 100.Heeger, A.J., Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angewandte Chemie International Edition, 2001. 40(14): p. 2591-2611. 101.Saunders, B.R., R.J. Fleming, and K.S. Murray, Recent Advances in the Physical and Spectroscopic Properties of Polypyrrole Films, Particularly Those Containing Transition-Metal Complexes as Counteranions. Chemistry of Materials, 1995. 7(6): p. 1082-1094. 102.Machida, S., S. Miyata, and A. Techagumpuch, Chemical synthesis of highly electrically conductive polypyrrole. Synthetic Metals, 1989. 31(3): p. 311-318. 103.Tsai, Y.-C., J.-M. Chen, and F. Marken, Simple Cast-Deposited Multi-Walled Carbon Nanotube/Nafion™ Thin Film Electrodes for Electrochemical Stripping Analysis. Microchimica Acta, 2005. 150(3-4): p. 269-276. 104.Tsai, Y.-C., S.-C. Li, and J.-M. Chen, Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir, 2005. 21(8): p. 3653-3658. 105.Wu, W.-C., H.-W. Chang, and Y.-C. Tsai, Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid at silicon carbide coated electrodes. Chemical Communications, 2011. 47(22): p. 6458-6460. 106.Moore, C.M., et al., Improving the Environment for Immobilized Dehydrogenase Enzymes by Modifying Nafion with Tetraalkylammonium Bromides. Biomacromolecules, 2004. 5(4): p. 1241-1247. 107.Kissinger, P.T. and W.R. Heineman, Cyclic voltammetry. Journal of Chemical Education, 1983. 60(9): p. 702. 108.Lovrić, M., Square-Wave Voltammetry, in Electroanalytical Methods, F. Scholz, Editor. 2010, Springer Berlin Heidelberg. p. 121-145. 109.Nematollahi, D., et al., Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochimica Acta, 2009. 54(28): p. 7407-7415. 110.Liu, Q., et al., Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosensors and Bioelectronics, 2007. 22(12): p. 3203-3209. 111.Pournaghi-Azar, M.H. and F. Ahour, Palladized aluminum electrode covered by Prussian blue film as an effective transducer for electrocatalytic oxidation and hydrodynamic amperometry of N-acetyl-cysteine and glutathione. Journal of Electroanalytical Chemistry, 2008. 622(1): p. 22-28. 112.Razmi, H. and M. Harasi, Rapid and accurate amperometric determination of acetaminophen in pharmaceutical preparations and spiked human blood serum samples at cadmium pentacyanonitrosylferrate modified glassy carbon electrode. Journal of the Iranian Chemical Society, 2008. 5(2): p. 296-305. 113.Kumar, S.A., C.-F. Tang, and S.-M. Chen, Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine. Talanta, 2008. 76(5): p. 997-1005. 114.Otero, T.F. and C. Santamaría, Dependence of polypyrrole production on potential. Synthetic Metals, 1992. 51(1–3): p. 313-319. 115.Shin, M.-C. and H.-S. Kim, Electrochemical characterization of polypyrrole/glucose oxidase biosensor: Part II. Optimal preparation conditions for the biosensor. Biosensors and Bioelectronics, 1996. 11(1–2): p. 171-178. 116. Vidal, J.-C., et al., Three approaches to the development of selective bilayer amperometric biosensors for glucose by in situ electropolymerization. Analyst, 1999. 124(3): p. 319-324.en_US
dc.description.abstract本研究成功的利用簡單且快速的方法來製備以石墨烯(rGO)為主要材料之感測器。本論文分成三部份,第一部分主要探討以改良後的Hummers method製備出氧化石墨烯(GO),利用電子顯微鏡及原子力顯微鏡觀察其表面形貌。再以抗壞血酸將GO還原成rGO,以UV-Vis光譜儀及電化學方式觀察其還原的狀況,證實此方法卻實製備出氧化石墨烯(GO)及還原成石墨烯(rGO)。 第二部份以非共價鍵修飾方式藉由Nafion高分子來分散rGO並修飾於玻璃碳電極(GCE)上作為乙醯胺酚及阿斯匹靈感測器之應用。以電子顯微鏡觀察rGO/Nafion 修飾電極的表面形貌,得知rGO均勻的分散於電極表面上,接著利用循環伏安法及方波伏安法來研究所製備的rGO/Nafion/GCE對於乙醯胺酚及阿斯匹靈之電化學特性。相較於未修飾的GCE發現rGO/Nafion/GCE在偵測乙醯胺酚及阿斯匹靈下均具有較好的電流信號,顯示rGO具有良好的電催化效果。此外rGO/Nafion/GCE對於乙醯胺酚及阿斯匹靈的效能參數分別是靈敏度50.77 AM-1cm-2和3.521AM-1cm-2,偵測範圍0.4 µM ~ 50 µM和 1 ~ 150 μM。 第三部份利用聚吡咯(PPy)、石墨烯(rGO)及酵素GOD以電化學方式聚合同時將其沉積GCE上作為葡萄糖感測器之應用。利用原子力顯微鏡(AFM)與場發射掃描式電子顯微鏡(FE-SEM)觀察酵素是否確實同時沉積於電極表面上。PPy/rGO奈米複合薄膜對於過氧化氫具有較高的訊號且呈線性比例。利用安培法以PPy/rGO/GOD奈米複合薄膜偵測葡萄糖濃度,所得到靈敏度為332.80 nA/mM cm2,線性範圍0.5~30 mM,應答時間約為8~12秒。並由干擾物實驗證實此葡萄糖感測器可避免抗壞血酸及尿素干擾,並成功將PPy/rGO/GOD奈米複合薄膜用來偵測合成血清中的葡萄糖。zh_TW
dc.description.abstractA noncovalent methd was used to diaperse graphene (rGO) into Nafion aqueous solution. The efficient electrode for electrocatalytic detection of acetaminophen and aspirin can be directly obtained. The morphology of resulting rGO nanocomposite was characterized by field emission scanning electron microscopy (FE-SEM). Cyclic voltammetry and square-wave voltammetry were used to investigate the electrochemical behavior of acetaminophen and aspirin at rGO/Nafion/GCE. Compared to a bare GCE, the rGO/Nafion coated GCE exhibited electrocatalytic activity and the ability to promote electron trandfer. The determination of aspirin with square-wave voltammetry displayed a sensitivity of 3.521 AM−1 cm−2 and concentration range from 1 - 150 μM; the sensitivity of acetaminophen was 50.77 AM−1 cm-2 and the concentration range from 0.3 - 60 μM with the correlation coefficient of 0.994 using square-wave voltammetry. The rGO/Nafion coated GCE shows excellent sensitivity for the detection of aspirin and acetaminophen, thus it is promising for the future development of electrochemical sensors. In the next part, this study was to investigate a one-step procedure for fabricating enzyme glucose sensor. The nanobiocomposite film of polypyrrole (PPy), reduced graphene oxide (rGO), and glucose oxidase (GOx) simultaneously deposited on a glassy carbon electrode (GCE) by performing electropolymerization. Detecting hydrogen peroxide of the PPy/rGO nanocomposite film proportionately yielded an amperometric response. This result indicates that the PPy/rGO/GOx biosensor generated a current response when detecting glucose in the solution under the optimal condition. To compare the morphology with the absence and presence of GOx in PPy/rGO nanocomposite film using atomic force microscopy (AFM) and scanning electron microscopy (SEM).The optimal glucose biosensor displayed a wide linear range from 0.5 to 30 mM, a sensiitivity of 332.8 nAmM-1cm-2, and a response time of less than 12 s.This biosensor exhibited favorable anti-interference property and it is suitable for application in the determination of glucose in synthetic serum.en_US
dc.description.tableofcontents摘要 i Abstract ii 總目錄 iii 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1. 前言 1 1.2. 分析物簡介及文獻探討 2 1.2.1 乙醯氨酚與阿斯匹靈 2 1.2.2 葡萄糖 13 1.3. 感測器簡介 19 1.3.1 化學感測器 19 1.3.2 生物感測器 19 生物感測器定義 19 生物感測器之基本結構與組成 19 1.4. 酵素特性與固定化方法 22 1.4.1. 酵素簡介 22 1.4.2. 酵素固定化方法 23 1.4.3. 葡萄糖氧化酵素 25 1.5. 石墨烯簡介 28 1.5.1. 石墨烯的性質與應用 28 1.5.2. 石墨烯的製備方法 29 1.6. 導電高分子 32 1.6.1 導電高分子簡介 32 1.6.2 導電高分子的導電機制 33 1.6.3 導電高分子-聚吡咯 35 1.6.4 聚吡咯的聚合方法與機制 35 1.6.5 導電高分子的應用 36 1.7. 全氟磺酸聚合物 37 1.8. 電化學原理與方法 38 1.8.1. 循環伏安法(Cyclic voltammetry,CV) 38 1.8.2. 安培法(Amperometry) 39 1.8.3. 方波伏安法(Square-wave voltammetry) 40 第二章 實驗方法與步驟 42 2.1. 實驗藥品 42 2.2. 實驗儀器 42 2.3. 實驗步驟 43 2.3.1 石墨烯氧化物(Graphene oxide,GO)製備與還原 43 2.3.2 電極前處理 44 2.3.3 石墨烯/全氟磺酸聚合物複合薄膜電極製備及實驗步驟 44 2.3.4 石墨烯/聚吡咯/葡萄糖氧化酵素複合薄膜製備及實驗步驟 45 第三章 結果與討論 47 3.1. 石墨烯氧化物(GO)及還原後的石墨烯(rGO)之探討 47 3.1.1. 場發射式掃描式電子顯微鏡 47 3.1.2. 原子力顯微鏡 48 3.1.3. 紫外光/可見光(UV-Vis)吸收光譜圖 49 3.1.4. 電化學測試 50 3.2. rGO/Nafion 複合薄膜修飾GCE之乙醯胺酚感測器 51 3.2.1. rGO/Nafion 複合薄膜微觀表面形貌之探討 51 3.2.2. 乙醯胺酚電化學行為探討 52 3.2.3. pH值對電極影響之探討 55 3.2.4. 掃描速率對電極影響之探討 56 3.2.5. 方波伏安法偵測乙醯胺酚 58 3.2.6. 偵測乙醯胺酚真實樣品之試驗 59 3.3. rGO/Nafion 複合薄膜修飾GCE之阿斯匹靈感測器 61 3.3.1 阿斯匹靈電化學行為探討 61 3.3.2 掃描速率對電極影響之探討 62 3.3.3 方波伏安法偵測阿斯匹靈 62 3.4. PPy/rGO/GOx 薄膜修飾GCE之葡萄糖生物感測器 66 3.4.1 電化學聚合PPy/rGO及PPy/rGO/GOD薄膜在聚合過程的影響因素 66 3.4.2 PPy/rGO修飾GCE偵測過氧化氫之試驗 68 3.4.3 PPy/rGO/GOD修飾GCE偵測葡萄糖之試驗 71 沉積庫侖量的影響探討 71 表面形貌之探討 72 酵素濃度的探討 74 操作電壓的探討 75 3.4.4 干擾物影響與合成血清應用之探討 77 第四章 結論與未來展望 81 4.1. 結論 81 4.2. 未來展望 82 第五章 參考文獻 83zh_TW
dc.subjectelectrochemical sensorsen_US
dc.titleElectrochemical sensor and biosensor based on graphene nanocompositeen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.