Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3243
標題: 竹節狀二氧化鈦奈米管陣列之製備與應用
Study of the Bamboo-type TiO2 Nanotube Array: Synthesis and Application
作者: 林瑞陽
Lin, Jui-Yang
關鍵字: 二氧化鈦;Bamboo-type TiO2;奈米管陣列;陽極氧化;水分解產氫;光催化觸媒;nanotube array;anodization;water decomposition to form hydrogen;photocatalyst
出版社: 化學工程學系所
引用: 1. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38. 2. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344. 3. 經濟部能源局, 2010能源產業技術白皮書. 2010. 4. Kudo, A., Photocatalyst Materials for Water Splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38. 5. Mor, G.K., et al., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 2006. 90(14): p. 2011-2075. 6. U., D., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5): p. 177. 7. The surface science of titanium dioxide. Surface Science Reports, 2003. 48: p. 53-229. 8. Shannon, R.D., Phase Transformation Studies in TiO<inf>2</inf> Supporting Different Defect Mechanisms in Vacuum‐Reduced and Hydrogen‐Reduced Rutile. Journal of Applied Physics, 1964. 35(11): p. 3414-3416. 9. Jennings, J.R., et al., Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays: Transport, Trapping, and Transfer of Electrons. Journal of the American Chemical Society, 2008. 130(40): p. 13364-13372. 10. Shukla, S., et al., Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor. Sensors and Actuators B: Chemical, 2004. 97(2–3): p. 256-265. 11. Satyajit, S., et al., Room temperature hydrogen response kinetics of nano–micro-integrated doped tin oxide sensor. Sens Actuators B Chem, 2007. 120(2): p. 573-583. 12. Oomman, K.V., et al., A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Hydrogen at Low Concentrations. Journal of Nanoscience and Nanotechnology, 2004. 4(7): p. 733-737. 13. Mor, G.K., et al., Photoelectrochemical properties of titania nanotubes. Journal of Materials Research, 2004. 19: p. 2989-2996. 14. 張正華, et al., 有機與塑膠太陽能電池. 五南圖書出版股份有限公司, 2007. 15. Gratzel, M., Powering the planet. Nature, 2000. 403: p. 363. 16. Lim, T.H., et al., Photocatalytic decomposition of NO by TiO2 particles. Journal of Photochemistry and Photobiology A: Chemistry, 2000. 134(3): p. 209-217. 17. Wu, T., et al., Evidence for H2O2 Generation during the TiO2-Assisted Photodegradation of Dyes in Aqueous Dispersions under Visible Light Illumination. The Journal of Physical Chemistry B, 1999. 103(23): p. 4862-4867. 18. Sun, Y., G. Wang, and K. Yan, TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. International Journal of Hydrogen Energy, 2011. 36(24): p. 15502-15508. 19. Costa, L.L. and A.G.S. Prado, TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry, 2009. 201(1): p. 45-49. 20. Liu, Y., et al., Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays. Applied Catalysis B: Environmental, 2009. 89(1-2): p. 142-148. 21. Xie, Y., et al., Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochimica Acta, 2008. 53(10): p. 3643-3649. 22. Kasuga, T., et al., Formation of Titanium Oxide Nanotube. Langmuir, 1998. 14(12): p. 3160-3163. 23. Hou, X.-G., et al., Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol-gel method. Chemical Engineering Journal, 2009. 146(1): p. 42-48. 24. Khan, M.A. and O.B. Yang, Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube. Catalysis Today, 2009. 146(1-2): p. 177-182. 25. Rosseler, O., et al., Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. Journal of Catalysis, 2010. 269(1): p. 179-190. 26. Jitianu, A., et al., Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon, 2004. 42(5-6): p. 1147-1151. 27. Xi Liu, T.F.J., Andrei Kolmakov, Sung-Hyeon Baeck, Martin Moskovits, Galen D. Stucky, Eric W. McFarland Synthesis of Au nanoclusters supported upon a TiO2 nanotube array. Materials Research Society, 2005. 20(5): p. 1093-1096. 28. Wang, J., et al., Visible light-driven nitrogen doped TiO2 nanoarray films: Preparation and photocatalytic activity. Journal of Alloys and Compounds, 2010. 494(1-2): p. 372-377. 29. Ishihara, H., et al., Electrochemical synthesis of titania nanostructural arrays and their surface modification for enhanced photoelectrochemical hydrogen production. Chemical Physics Letters, 2010. 489(1-3): p. 81-85. 30. Mohapatra, S.K., et al., A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. Journal of Catalysis, 2007. 246(2): p. 362-369. 31. Ruan, C., et al., Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte. The Journal of Physical Chemistry B, 2005. 109(33): p. 15754-15759. 32. Sun, L., et al., Effect of electric field strength on the length of anodized titania nanotube arrays. Journal of Electroanalytical Chemistry, 2009. 637(1-2): p. 6-12. 33. Xiao, P., et al., TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochemistry Communications, 2007. 9(9): p. 2441-2447. 34. Grimes, C.A., Synthesis and application of highly ordered arrays of TiO2 nanotubes. Journal of Materials Chemistry, 2007. 17(15): p. 1451-1457. 35. Wang, J., et al., Structures, electronic properties, and hydrogen-storage capacity of single-walled TiO2 nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 2009. 41(5): p. 838-842. 36. Piotrowski, O., C. Madore, and D. Landolt, The Mechanism of Electropolishing of Titanium in Methanol-Sulfuric Acid Electrolytes. Journal of The Electrochemical Society, 1998. 145(7): p. 2362-2369. 37. Anitha, V.C., et al., Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes. Electrochimica Acta, 2010. 55(11): p. 3703-3713. 38. Mor, G.K., Fabrication of tapered, conical-shaped titania nanotubes. JOURNAL OF MATERIALS RESEARCH, 2003. 18(11): p. 2588. 39. Liu, Z., et al., Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. International Journal of Hydrogen Energy, 2009. 34(8): p. 3250-3257. 40. Mor, G.K., et al., Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters, 2004. 5(1): p. 191-195. 41. Bae, S., et al., Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode. Solar Energy Materials and Solar Cells, 2008. 92(4): p. 402-409. 42. Kim, E.Y., J.H. Park, and G.Y. Han, Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation. Journal of Power Sources, 2008. 184(1): p. 284-287. 43. Nam, W., et al., Preparation of anodized TiO2 photoanode for photoelectrochemical hydrogen production using natural seawater. Solar Energy Materials and Solar Cells, 2010. 94(10): p. 1809-1815. 44. Chang, F.-W., et al., Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides. Applied Catalysis A: General, 2006. 302(2): p. 157-167. 45. Yang, Y.Z., C.H. Chang, and H. Idriss, Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh). Applied Catalysis B: Environmental, 2006. 67(3-4): p. 217-222. 46. Larramona, G., et al., Nanostructured Photovoltaic Cell of the Type Titanium Dioxide, Cadmium Sulfide Thin Coating, and Copper Thiocyanate Showing High Quantum Efficiency. Chemistry of Materials, 2006. 18(6): p. 1688-1696. 47. Bai, J., et al., A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays. Applied Catalysis B: Environmental, 2010. 95(3–4): p. 408-413. 48. Liu, J., et al., Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag–SrTiO3 nanotube arrays. International Journal of Hydrogen Energy, 2011. 36(10): p. 5811-5816. 49. Lai, Y., J. Gong, and C. Lin, Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. International Journal of Hydrogen Energy, 2012. 37(8): p. 6438-6446. 50. Zhang, Z., M.F. Hossain, and T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. International Journal of Hydrogen Energy, 2010. 35(16): p. 8528-8535. 51. Gong, J., Y. Lai, and C. Lin, Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochimica Acta, 2010. 55(16): p. 4776-4782. 52. Albu, S.P., D. Kim, and P. Schmuki, Growth of Aligned TiO2 Bamboo-Type Nanotubes and Highly Ordered Nanolace. Angewandte Chemie, 2008. 120(10): p. 1942-1945. 53. Kim, D., et al., Bamboo-Type TiO2 Nanotubes: Improved Conversion Efficiency in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008. 130(49): p. 16454-16455. 54. Lin, J., K. Liu, and X. Chen, Synthesis of Periodically Structured Titania Nanotube Films and Their Potential for Photonic Applications. Small, 2011. 7(13): p. 1784-1789. 55. Xie, Y.-L., et al., Fabrication of TiO2 nanotubes with extended periodical morphology by alternating-current anodization. Electrochemistry Communications, 2012. 17(0): p. 34-37. 56. Zhang, F., et al., Anodic formation of ordered and bamboo-type TiO2 anotubes arrays with different electrolytes. Journal of Alloys and Compounds, 2010. 490(1–2): p. 247-252. 57. Butail, G., et al., Dye-sensitized solar cells using branched titania nanotube films. Thin Solid Films, 2012. 520(7): p. 2764-2768. 58. Li, S., J. Yin, and G. Zhang, Fabrication of multi-sectional TiO<sub><i>2</i></sub> nanotube arrays by anodization. SCIENCE CHINA Chemistry, 2010. 53(5): p. 1068-1073. 59. Bai, J., et al., A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays. Applied Catalysis B: Environmental, 2010. 95(3-4): p. 408-413. 60. Bolton, J.R., Solar photoproduction of hydrogen: A review. Solar Energy, 1996. 57(1): p. 37-50. 61. Ghosh, A.K. and H.P. Maruska, Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes. Journal of The Electrochemical Society, 1977. 124(10): p. 1516-1522. 62. Maurer, G., Thermochemical Data of Pure Substances, Parts I and II : by Ihsan Barin; published by VCH Verlags-gesellschaft, Weinheim, 1989; 1829 pages; price DM 680; ISBN 3-527-27812-5. Chemical Engineering and Processing, 1990. 28(1): p. 52-53. 63. 呂宗昕, 圖解奈米科技與光觸媒. 商周出版, 2003. 64. 林敬二,林宗義, 儀器分析. 亞美出版社, 1994. 65. Lim, S.L., et al., Transparent titania nanotubes of micrometer length prepared by anodization of titanium thin film deposited on ITO. Applied Surface Science. In Press, Corrected Proof. 66. Tsuchiya, H., et al., Self-Organization of Anodic Nanotubes on Two Size Scales. Small, 2006. 2(7): p. 888-891. 67. Bauer, S., S. Kleber, and P. Schmuki, TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications, 2006. 8(8): p. 1321-1325.
摘要: 
氫能源為目前新綠色能源之一。光觸媒經光源照射給予能量後,可使其產生光催化反應,而此光催化反應亦被利用於進行水分解產氫。二氧化鈦為目前較為廣泛研究之光觸媒材料,因其具有良好之化學穩定性、無毒性且製備成本低廉。為使提升光催化之效果,提高光觸媒之比表面積可有效提高光催化反應,此高規則排列之二氧化鈦陣列可應用於光電化學電池產氫中。
在本研究中,將在陽極氧化法以變電壓系統製備竹節狀二氧化鈦奈米管陣列,製備條件之控制變數將以變電壓系統中以不同的高電壓、陽極氧化時間、鍛燒溫度與變換電壓次數,並以場發射掃描式電子顯微鏡、廣角X-ray繞射儀、電化學分析儀與氣相層析儀等儀器進行分析,觀察探討以得到具高規則排列之竹節狀二氧化鈦奈米管陣列。竹節狀二氧化鈦奈米管陣列,比表面積較傳統二氧化鈦奈米管為高,故可提升光催化效果,故其可達到最佳之產氫效率與光電轉換效率,其光電轉換效率可達15.04%。

Hydrogen is a source of clean energy. The photocatalyst has been applied to water splitting generate hydrogen when it is activated by the light. Many studies have investigated the photocatalysis, and the most extensive photocatalyst is titanium oxide(TiO2). Due to its photo-electrochemical stability, non-toxicity, and low cost for fabrication. High surface area TiO2 and highly ordered TiO2 nanotubes can enhance the photocatalysis activity, and lead to a potential application for hydrogen generation application from photo electrochemical cell.
This study will synthesize Bamboo-type TiO2 nanotube array by alternating voltage system under the anodization method. To achieve the highly order Bamboo-type TiO2 nanotube array, the high voltage system in alternating voltage condition, anodization time, calcinations temperature and switch of voltage have been effectively controlled. Studying the structural properties of the highly order Bamboo-type TiO2 nanotube array has used the instructments of Field Emission Scanning Electron Microscope(FE-SEM), X-ray Diffraction Spectrometer(XRD), Electrochemical Chromatography, and Gas Chromatography(GC). The Bamboo-type TiO2 nanotube arrays have the higher surface area than the tranditional TiO2 nanotube arrays, it could enhance the photocatalytic activity. The photoconversion efficiency of Bamboo-type TiO2 nanotube array achieves 15.04%.
URI: http://hdl.handle.net/11455/3243
其他識別: U0005-1807201216385400
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.