Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3244
標題: 紫外光輔助銀/二氧化鈦複合奈米流體製備與鑑定
Study on Preparation of Silver/ Titanium Dioxide Composite Nano-fluids Assisted with Ultraviolet Irradiation and It’s Property
作者: 陳雋永
Chen, Chun-Yung
關鍵字: 乙二醇;Ethylene glycol;紫外光;銀/二氧化鈦複合奈米粒子;複合奈米流體;熱傳導係數;Ultraviolet irradiation;Silver/Titania composite nanoparticle;Nanofluid;Thermal conductivity coefficient
出版社: 化學工程學系所
引用: 1. 張立德 ,“奈米材料” 五南圖書出版公司 2. C. Kleinstreuer, Y. Feng, “ Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review”,Nanoscale research letters(2011) 6-299 3. S.U.S Choi,J.A Eastman, “Enhancing thermal conductivity of fluids with nanoparticles”, FED 231/MD 66,ASME,New York (1995) 99-105 4. 鄧敦平,“奈米流體在能源領域的應用”能源報導 7月 (2011)23-26 5. C. Ducamp-Sanguesa, R. Herrera-Urbina, M. Figlarz ,“Synthesis and characterization of fine and monodisperse silver particles of uniform shape”, Journal of Solid State Chemistry (1992) 272–280 6. S. Gautam, P. Dubey, M. N. Gupta,” A facile and green ultrasonic-assisted synthesis of BSA conjugated silver nanoparticles”, Colloids and Surfaces B: Biointerfaces (2013) 879–883 7. 尹邦躍, “奈米時代”, 五南圖書出版公司 8. W. Blum, Y. J. Li ,J. Chen, X. H. Zeng ,K. Lu , “On the Hall–Petch relation between flow stress and grain size”, Int. J. Mat. Res. (2006) 12 9. R. Roy, Komamenic , D. M. Roy ,“Mater Res Soc Symp Proc.”(1984) 32-347 10. 徐國財, 張立德 ,“奈米複合材料”, 五南圖書出版公司 11. M. Machida, K. Norimoto, T. Kimura, “Antibacterial Activity of Photocatalytic Titanium Dioxide Thin Films with Photodeposited Silver on the Surface of Sanitary Ware” Journal of the American Ceramic Society 88(2005) 95-100 12. F. Meng, Z. Sun, “A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering”,applied surface science 255(2009)6715-6720 13. H. Chen, Y. Ding, Y. He, C. Tan,“ Rheological behaviour of ethylene glycol based titania nanofluids”,Chemical Physics Letters (2007) 333–337 14. X.Q. Wang, A. S. Mujumdar, “ Heat transfer characteristics of nanofluids: a review”, International Journal of Thermal Sciences (2007) 1–19 15. S. A. Ibrahim, S. Sreekantan, “Effect of pH on TiO2 nanoparticles via sol gel method” , International Conference on X-Rays & Related Techniques in Research & Industry (2010) June 9-10 16. 王世敏, 許祖勛, 傅晶, “奈米材料原理與製備”, 五南圖書出版公司 17. J.S.Kim, J. I. Eng, “Reduction of silver nitrate in ethanol by poly(N-vinylpyrrolidone)”, Journal of Industrial and Engineering Chemistry (2007) 566-570 18. B. Wiley, Y. Sun, Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties” ,Acc.chem.res. 40 (2007) 1067-1076 19. F. Fievet, J.P. Lagier, B. Blin ,“Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and subm1cron size metal particles”, Solid State lonics ( 1989 ) 198-205 20. L.K. Kurihara, G.M. Chow, P.E. Schoen, “ Nanocrystalline metallic powders and films produced by the polyol method”, Nanostructured Materials,6(1995)607-613 21. R. He, X. Qian, J. Yin ,Z. Zhu, “Preparation of polychrome silver nanoparticles in different solvents”, J. material. chem. 12(2002)3783-3786 22. M. El-Kemary, Y. Abdel-Moneam, M. Madkour, I. El-Mehasseb, “ Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications”, Journal of Luminescence (2011) 570–576 23. M. K. Seery , R. George ,P. Floris ,S. C. Pillai, “ Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis”,Journal of photochemistry and photobiology a: chemistry 189(2007) 258–263 24. A. Sclafani,J. M. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media”, Journal of Photochemistry and Photobiology A: Chemistry 113(1998)181-188 25. K. N. Kim, M. R. Hoffmann, “ Heterogeneous photocatalytic degradation of ethylene glycol and propylene glycol”, Korean J. Chem. Eng. (2008) 89-94 26. Z. Y. Huang , G. Mills , B. Hajek,“Spontaneous formation of silver particles in basic 2-propanol”, J. Phys. Chem .(1993) 11542–11550 27. X. Jiang, S. Chen,C. Mao, “Synthesis of Ag/SiO2 nanocomposite material by adsorption phase nanoreactor technique ”,Colloids and surfaces A: physicochem. eng. aspects 320 (2008) 104–110 28. T. Nogawa, T. Isobe, S. Matsushita, A. Nakajima, “Preparation and visible-light photocatalytic activity of Au- and Cu-modified TiO2 powders”, Materials Letters 82 (2012) 174-177 29. M. Albert, Y. M. Gao, D. Toft, K. Dwight, A.Wold ,“Photoassisted gold deposition of titanium dioxide”,Materials Research Bulletin 27(1992)961-966 30. S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun , “ A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide”, Catalysis Today (2004) 877-884 31. K. Mallick, M.J. Witcomb, M.S. Scurrell, “ Polymer-stabilized colloidal gold: a convenient method for the synthesis of nanoparticles by a UV-irradiation approach”, Applied Physics A (2005) 395-398 32. A. Henglein, “Colloidal Silver Nanoparticles: Photochemical Preparation and Interaction with O2, CCl4, and Some”,Chem. Mater.,10(1998)444-450 33. Y. Yonezawa , T. Sato , Masashi Ohno and Hiroshi Hada, “Photochemical formation of colloidal metals”, J. Chem. Soc., Faraday Trans. 1, 83(1987)1559-1567 34. Farhataziz, M.A.J. Rodgers , “Radiation chemistry: principles and applications”, VCH, New York (1987) 35. P. D. Cozzoli, R. Comparelli,E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, “ Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution”, J. am. chem. soc(2004) 126, 3868-3879 36. E. Chen, H. Su , W. Zhang, T. Tan, “A novel shape-controlled synthesis of dispersed silver nanoparticles by combined bioaffinity adsorption and TiO2 photocatalysis",Powder technology 212 (2011) 166-172 37. X. Wang, S. Li, H. Yu, J. Yu, S. Liu, “ Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity”, Chemistry - A European Journal (2011) 7777–7780 38. 高濂,孫靜,劉陽橋,”奈米粉體的分散與表面改性” 五南圖書出版公司 (2005) 39. J.J. Lopez-Garcia, C. Grosse, J. Horno, “ On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions”, Journal of Colloid and Interface Science (2009) 384–389 40. 楊萬發,“水及廢水處理化學”,茂昌出版社,(2002) 41. 鄭忠,胡紀華, “膠體穩定”, 廣東科技出版社(1993) 42. J. A. Lewis, “Principles of ceramics processing 2nd edition.” Journal of the American Ceramic Society 83(2000)341–2359. 43. Y. Sun, B. Gates, B. Mayers, Y. Xia , “Crystalline Silver Nanowires by Soft Solution Processing”, Nano letters 2(2002)165-168 44. 王培義,徐寶財,“ 表面活行劑:合成、性能、應用”,化學工業出版社(2nd ) (2012) 45. S.Paul, “Surface coatings science and technology”, John Wiley and Sons Inc. (1996) 46. X. Chen, H. Cheng, J. Ma, “ A study on the stability and rheological behavior of concentrated TiO2 dispersions”, Powder Technology 99(1988) 171-176 47. W. J. Tseng, K. C. Lin, “Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions”, Materials science and engineering: A 355 (2003) 186-192 48. C.W. Nan, R .Birringer, D.R. Clarke, H .Gleiter ,“Effective thermal conductivity of particulate composites with interfacial thermal resistance.”, J Appl Phys (1997)6692–6699 49. J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski, “Thermaltransport in nanofluids”, Annual Review of Materials Research (2004) 219-246 50. S. W. Kang , W. C. Wei, S. H. Tsai, S. Y. Yang, “ Experimental investigation of silver nano-fluid on heat pipe thermal performance”, Applied Thermal Engineering (2006) 2377–2382 51. M. C. S. Reddy, V. V. Rao, “ Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids ”, International Communications in Heat and Mass Transfer (2013) 6-11 52. P.W. Atkins, “Physical chemistry”,Oxford university press 6th ed. (1988) 53. 張仕欣,王崇人, “金屬奈米粒子的吸收光譜”,化學no.3 (1998) 209-222 54. 許樹恩,吳泰伯, “X光繞射原理及材料結構分析”,中國材料科學學會 (1996) p422 55. 馬振基, “奈米材料科技原理與應用”,全華科技圖書股分有限公司 (2003) 56. Holtsville,“Instruction manual for 90 Plus particle sizer”, Brookhaven instruments corporation 57. 呂維明, 呂文芳, “過濾技術”, 高立圖書有限公司, 1994. 58. H.S. Carslaw and J.C. Jaeger, “ Conduction of Heat in Solids, Oxford, London”, 2nd Edition (1959) 59. KD2 Pro Thermal Properties Analyzer Operator’s Manual version 4, Decagon Devices. 60. Titanium dioxide as photocatalyst. Degussa Technical Information No.1243 61. A. Rogach , G. p. Shevchenko , Z. Afanas''ev a, V. V. Sviridov ,“Changes in the morphology and optical absorption of colloidal silver reduced with formic acid in the polymer matrix under uv irradiation”, J. phys. chem. b, 1997, 101 (41), 8129–8132 62. Q. Lu, K. J. Lee, S. J. Hong, N. V. Myung, H. T. Kim, Y. H. Choa ,“Growth factors for silver nanoplates formed in a simple solvothermal process”, Journal of Nanoscience and Nanotechnology (2010) 3393–3396 63. H.H. Huang, X. P. Ni, G.I. Loy, C. H. Chew, K. I. Tan, F. C. Loh, J.F. Deng, G. Q. Xu, “Photochemical formation of silver nanoparticles in poly(n-vinylpyrrolidone) ”,Langmuir 12(1996) 909-912 64. W. Zhou,H. Liu,J. Wang,D. Liu,G. Du,G. Cui, “Ag2O/ TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity.”, ACS Appl Mater Interfaces(2010) 2385-92 65. H. L. Feng, X. Y. Gao, Z. Y. Zhang, J. M. Ma, “ Study on the Crystalline Structure and the Thermal Stability of Silver-oxide Films Deposited by Using Direct-current Reactive Magnetron Sputtering Methods”, Journal of the Korean Physical Society (2010) 1176-1179 66. Y. L. Kuo, H. W. Chen, Y. Ku, “ Analysis of silver particles incorporated on TiO2 coatings for the photodecomposition of o-cresol”, Thin Solid Films (2007) 3461-3468 67. S. Anandan, P. Sathish Kumar, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, “Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88”, Solar Energy Materials and Solar Cells (2008) 929-937 68. M.L. Taylor, G.E. Morris, R.St.C. Smart, “Polyphosphate interaction with aluminium-doped titania pigment particles”, Colloids Surf. A (2001), 285–294 69. G.E. Morris, W.A. Skinner, P.G. Self, R.St.C. Smart, “Surface chemistry and rheological behavior of titania pigment suspensions”, Colloids Surf. A (1999) 27–41 70. D.Shchukin,E. Ustinovich,D. Sviridov,P. Pichat , “ Effect of silver deposits on the photocatalytic activity of titanium dioxide for the removal of 2-chlorophenol in water.”, Photochem Photobiol Sci. ( 2004) 142-144.
摘要: 
為了改善導熱流體的熱傳導係數,我們藉由添加固體粒子於其中來改良其性質,但流體中添加的固體粒子尺寸如果是微米級以上,流體中的固體粒子會有造成機械磨損、較高的壓力降和容易沉澱等問題,因此奈米流體成為改善導熱流體的新方法。本研究是在探討製備銀/二氧化鈦複合奈米粒子和它的導熱性質,在製備奈米銀粒子時,乙二醇可做為溶劑兼還原劑,使二氧化鈦(P25)懸浮在其中,而銀離子在紫外光的照射下能產生光催化還原反應。在製備過程中我們還添加氫氧化鈉,使得奈米銀的結晶過程能更快速且可提供更多晶核以利銀離子還原。
為了能了解在鹼性環境下製備的銀晶粒之晶格結構,我們以X光繞射分析儀分析在不同氫氧化鈉濃度下製備的晶粒結構,從結果得知,銀離子雖然會和氫氧根反應生成氧化銀,但經過紫外光輔助光催化還原後,其奈米粒子中的氧化銀含量極低,大部分都已經被還原成銀粒子,而以Scherrer equation估算其單晶粒徑,其粒徑約在11到22奈米左右。用經過表面鹼吸附的二氧化鈦來製備銀/二氧化鈦複合粒子,並對奈米流體的性質進行分析,我們得到以下結論:
(1) 從穿透式電子顯微鏡觀察,二氧化鈦濃度在0.00067M下製備的複合粒子,其奈米銀的粒徑約在5到10奈米左右,而單一銀/二氧化鈦複合奈米粒子的粒徑約在20到70奈米左右,且奈米銀粒子都能確實吸附在二氧化鈦上,代表以此方法製備出的複合奈米流體的粒徑可達到奈米等級。
(2) 經過黏度分析後得知,當固定添加0.005M的硝酸銀在不同二氧化鈦濃度下製備銀/二氧化鈦複合粒子時,可使原本表面鹼吸附二氧化鈦的乙二醇懸浮液黏度降低,例如原本0.25M的表面鹼吸附二氧化鈦添加固定量的銀粒子在表面後,其黏度可從21cp降至17cp,而原本0.05M的表面鹼吸附二氧化鈦添加相同量的銀粒子在表面後,其黏度從17cp降至16cp,由此可見無論二氧化鈦濃度高或低,在製備複合粒子過程中,氫氧根在反應中被消耗殆盡,使得二氧化鈦表面不再受氫氧根影響,黏度因而明顯降低。
(3) 在提升熱傳導效果方面,熱傳導係數會隨著二氧化鈦的固含量增加而提升,當二氧化鈦濃度提升至1 vol%時,其熱傳導係數比乙二醇的0.253(W/m‧k)提高了2.7%;當固定二氧化鈦濃度在0.1 vol%時,如在二氧化鈦表面添加莫爾比10%的奈米銀粒子,可使原本熱傳導係數為0.256(W/m‧k)的純二氧化鈦乙二醇溶液提高約3.5%,此熱傳導係數的提升明顯高過於大量增加二氧化鈦固含量時熱傳導係數的增加量,代表銀粒子修飾後的二氧化鈦粒子有助於提升奈米流體的熱傳導係數。將二氧化鈦奈米流體的熱傳結果與Maxwell理論數學式作比較,發現在低濃度0.1 vol%時,二氧化鈦奈米流體的熱傳與符合理論計算結果。

Adding solid particle can be used to improve the thermal conductivity of the working fluid. But in the fluid containing the particles size in the micron scale, it will cause mechanical wear, high pressure drop and particle aggregation during forced heat convective process. This problem can be overcome through dispersing and stabilizing nanoparticles with higher heat transfer properties in the fluid. This study disperses titanium dioxide (P25) in ethylene glycol that can be used as a solvent and reducing agent for silver ions to synthesize silver nanoparticles. With ultraviolet light irradiation, silver ion can also be reduced with photocatalyzed reaction. We add sodium hydroxide to synthesize silver nano particles more quickly and having more crystal nuclei to grow.
To understand lattice structure of silver nanoparticles prepared in alkaline environment, we use XRD to analyze silver nanoparticles prepared in different alkaline concentration. From the results, although sodium hydroxide and silver ions react to produce silver oxide,the product would finally reduce to silver after UV irradiation.The content of silver oxide nanoparticles in composite nanoparticles is very low, and silver crystal size is about 11-22 nm analyzed by Scherrer equation.
Analyzing property of nanofluid prepared by titanium dioxide adsorbed with sodium hydroxide on the surface, we can get the following conclusions:
(1) From transmission electron microscopy, preparing composite nanoparticle with 0.00067M titanium dioxide suspension, silver nanoparticle, which size is about 5-10 nm, is observed on the surface of silver / titanium dioxide composite nanoparticle which size is 20-70 nm and its critical dimesion conform to the regulation of nanoscale.
(2) With viscosity analysis, we learned that the amount of silver nanoparticles have greater influence on viscosity;for example, adsorbing 0.005M silver nanoparticles on the surface of titanium dioxide in different concentration , the viscosity of 0.25M titanium dioxide with alkali on the surface reduce from 21cp to 17cp, and the concentration of 0.05M reduce from 17cp to 16cp.The result shows whether high or low concentration of titanium dioxide, hydroxide would be consumed in the process of preparing silver / titanium dioxide composite nanoparticles, and viscosity of titanium dioxide suspension adsorbed with sodium hydroxide decrease significantly.
(3) Thermal conductivity coefficient increase with the solid content of titanium dioxide in ethylene glycol;for instance , thermal conductivity coefficient of 1 vol% titanium dioxide suspension increase 2.7% than ethylene glycol which thermal conductivity coefficient is 0.253(W/m‧k). Fixing solid content of titanium dioxide suspension at 0.1 vol%,thermal conductivity coefficient is 3.5% greater when adding 10% mole ratio of silver nanoparticles on titanium dioxide than pure titanium dioxide suspension which thermal conductivity coefficient is 0.256(W/m‧k); in other words, titanium dioxide modified by silver nanoparticles on the surface would increase thermal conductivity coefficient of nanofluid significantly;comparing experimental data and the results of Maxwell model,we get the results that low concentration of titanium dioxide nanofluid which volume concentration is 0.1 vol% is closer to theotectical value.
URI: http://hdl.handle.net/11455/3244
其他識別: U0005-2308201311123500
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.