Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3250
DC FieldValueLanguage
dc.contributor孫幸宜zh_TW
dc.contributorShing-Yi Suenen_US
dc.contributor.author黨鈺銘zh_TW
dc.contributor.authorDang, Yu-Mingen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:31:33Z-
dc.date.available2014-06-06T05:31:33Z-
dc.identifierU0005-2908201313131300en_US
dc.identifier.citation[1] I. Koyuncu, Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes : Effects of feed concentration and cross flow velocity. Desalination, 143 (2002) 243. [2] R. Jiraratananon, A. Sungpet, P. Luangsowan, Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salts. Desalination, 130 (2000) 177. [3] S. Netpradit, P. Thiravetyan, S. Towprayoon, Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Research, 37 (2003) 763. [4] S. Karcher, A. Kornmuller, M.Jekel, Screening of commercial sorbents for the removal of reactive dyes. Dyes and Pigments, 51 (2001) 111. [5] A. J. Chaudhary, B. Gangli, S. N. Grimes, The used of chromium waste sludge for the adsorption of color from dye effluent streams, Journal of Chemical Technology and Biotechnology, 77 (2002) 767. [6] S. Wang, Z. H. Zhu, A. Coomes, F. Haghseresht, G. Q. Lu, The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater, Journal of Colloid and Interface Science, 284 (2005) 440. [7] R. Jiraratananon, A. Sungpet, P. Luangsowan, Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt, Desalination, 130 (2000) 177. [8] S. Netpradit, P. Thiravetyan, S. Towprayoon, Application of waste metal hydroxide sludge for adsorption of azo reactive dyes, Water Research, 37 (2003) 763. [9] C. Allegre, P. Moulin, M. Maisseu, F. Charbit, Treatment and reuse of reactive dyeing effluents, Journal of Membrane Science, 269 (2006) 15. [10] I. Koyuncu, Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes : effects of feed concentration and cross flow velocity, Desalination, 143 (2002) 243. [11] S. Karcher, A. Kornmuller, M. Jekel, Screening of commercial sorbents for the removal of reactive dyes, Dyes and Pigments, 51 (2001) 111. [12] X. S. Wang , J. P. Chen, Biosorption of Congo Red from Aqueous Solution using Wheat Bran and Rice Bran: Batch Studies, Separation Science and Technology, 44 (2009)1452. [13] S. Hashemian, S. Dadfarnia, M. R. Nateghi, F. Gafoori, Sorption of acid red 138 from aqueous solutions onto rice bran, African Journal of Biotechnology, Vol. 7 (5), (2008) 600. [14] S.F. Montanher, E.A. Oliveira, M.C. Rollemberg, Removal of metal ions from aqueous solutions by sorption onto rice bran, Journal of Hazardous Materials, B117 (2005) 207. [15] S. Rehman Khan, A. Inayat, A. Rana, Sorption of Reactive and Acid Dyes from Aqueous Solutions Onto Sawdust, Bangladesh Journal of Scientific and Industrial Research, 45(1), (2010) 35. [16] P. Li, Y.-J. Su, Y. Wang, B. Liu, L.-M. Sun, Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder, Journal of Hazardous Materials, 179 (2010) 43. [17] E. N. E. Qada, S. J. Allen, G. M. Walker, Adsorption of basic dyes from aqueous solution onto activated carbons, Chemical Engineering Journal, 135 (2008) 174. [18] A. Saeed, M. W. Akhter, M. Iqbal, Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45 (2005) 25. [19] M. T. Uddin, M. A. Islam, S. Mahmud, M. Rukanuzzaman, Adsorptive removal of methylene blue by tea waste, Journal of Hazardous Materials, 164 (2009) 53. [20] V. M. Vucurovic R. N. Razmovski, M. N. Tekic, Methylene blue (cationic dye) adsorption onto sugar beet pulp: Equilibrium isotherm and kinetic studies, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 108. [21] F. A. Pavan, A. C. Mazzocato, Y. Gushikem, Removal of methylene blue from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent, Bioresource Technology, 99 (2008) 3162. [22] D. K. Roper, E. N. Lightfoot, Separation of biomolecules using adsorptive membranes, Journal of Chromatography A, 702 (1995) 3. [23] C. Charcosset, Purification of proteins by membrane chromatography, Journal of Chemical Technology and Biotechnology, 71 (1998) 95. [24] R. Ghosh, Protein separation using membrane chromatography: opportunities and challenges, Journal of Chromatography A, 952 (2002) 13. [25] H. Zou, Q. Luo, D. Zhou, Affinity membrane chromatography for the analysis and purification of proteins, Journal of Biochemical and Biophysical Methods, 49 (2001) 199. [26] K. H. Gebauer, J. Thommes, M.-R. Kula, Plasma protein fractionation with advanced membrane adsorbents, Biotechnology and Bioengineering, 54 (1996) 181. [27] 劉家弘, 使用離子交換薄膜進行染料吸附/脫附之研究, 碩士論文, 國立中興大學化學工程研究所, 台中, 台灣 (2006). [28] 邱永亮, 魏盛德, 染色化學, 徐氏基金會出版, 台北, 台灣 (1975). [29] 吳政修, 使用陰離子交換薄膜從水中移除反應性染料之研究, 碩士論文, 國立中興大學化學工程研究所, 台中, 台灣 (2007). [30] J. Karapinar Kapdan, F. Kargi, Simutaneous biodegradation and adsorption of texile dyestuffs in an activated sludge unit. Process Biochemistry, 37 (2002) 973. [31] 林明瑞, 郭倍甄, 廢水廠污泥及米糠複合基質之能源化可行性研究, 國立台中教育大學環境教育研究所, 中華民國環境工程學會2007 廢水處理技術研討會, 高雄, 台灣 (2007). [32] 林晏榛, 高密度聚乙烯對聚苯乙烯發泡的影響, 碩士論文, 國立台北科技大學有機高分子研究所, 台北, 台灣 (2007). [33] 陳運庚, 磷酸亞鐵鋰粉體粒徑對電池性能的影響, 碩士論文, 國立中央大學化學工程與材料工程研究所, 桃園, 台灣 (2008). [34] W. A. Ritschel, G. L. Kearns, Handbook of Basic Pharmacokinetics Including Clinical Applications, 7 edition, American Pharmacists Association, USA (2009) [35] 楊逸楨, 土壤無機相對有機污染物吸附特性之研究, 碩士論文, 國立 中央大學環境工程研究所, 桃園,台灣 (2007). [36] R. W. Sabnis, Handbook of Biological Dyes and Stains : Synthesis and Industrial Applications, Wiley, New Jersey, USA (2010) [37] M. Noroozifar, M. Khorasani Motlagh, S. Bahmanzadeh ,S. Boroon, A novel optical membrane with extended detection range of pH, Turkish Journal of Chemistry, 34 (2010) 722. [38] Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, G. M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes and Pigments 77 (2008) 16. [39] 丁學範, 以化學氧化法製備非晶型氧化鈦網狀結構及其吸附之應用, 碩士論文, 國立中興大學化學工程研究所, 台中, 台灣 (2010). [40] B. Singha, S. K. Das, Biosorption of Cr(VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies, Colloids and Surfaces B: Biointerfaces, 84 (2011) 221–232. [41] V. Vadivelan, K. V. Kumar, Equilibrium, kinetics, mechanism and process design for sorption of methylene blue onto rice husk, Journal of Colloid and Interface Science, 286 (2005) 90. [42] M. T. Uddin, M. A. Islam, S. Mahmud, M. Rukanuzzaman, Adsorptive removal of methylene blue by tea waste, Journal of Hazardous Materials, 164 (2009) 53. [43] R. K. Xu, S. C. Xiao, J. H. Yuan, A. Z. Zhao, Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues, Bioresource Technology, 102 (2011) 10293. [44] B.H. Hameeda , M.I. El-Khaiary, Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies, Journal of Hazardous Materials, 154 (2008) 237 [45] S. W. Won, G. Wu, H. Ma, Q. Liu, Y. Yan, L. Cui, C. Liu, Y.-S. Yun, Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste, Journal of Hazardous Materials, B138 (2006) 370 [46] Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, G. M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes and Pigments, 77 (2008) 16.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3250-
dc.description.abstract本研究利用碾米廠取得之脫脂米糠前處理成吸附材後,以保麗龍球(聚苯乙烯, PS)為高分子基材摻混20 wt.%的脫脂米糠顆粒(顆粒大小為1-45 μm)製備成多孔洞吸附性混合基材薄膜(Mixed Matrix Membrane, MMM),厚度為158-165 μm,而陽離子交換容量為594±16.5 μmol/g及陰離子交換容量為235.3±13.4 μmol/g。所製備的混合基材薄膜應用於陽離子染料(Methyl Violet 2B、Malachite green oxalate) 及陰離子染料(Cibacron Brilliant Red 3B-A、Cibacron Blue 3GA)的吸附/脫附程序。以吸附劑之表面電位及染料之解離程度來加以研究及探討吸附條件。由實驗結果得知:批次程序中脫脂米糠顆粒及混合基材薄膜之吸附平衡時間分別為12及48小時,且可得知各染料吸附最適pH值為MV:pH 9、MGO:pH 7、CBR:pH 3及CB:pH 3。由批次脫附實驗結果得知:以40 %甲醇為溶劑之1 M KCl(v/v)為最佳脫附液,各個染料所得脫附率約80%以上。而流動程序中,以流量1 mL/min進行吸附,測試直徑47 mm圓片之薄膜模組的效率。以5 ppm為進料濃度,放入一片薄膜(圓片:bed volume = 0.28 mL),由實驗結果得知:貫穿點為7-25 mL(25-90倍bed volume)。 混合染料流動程序中以10 mL,5 ppm MGO + 5 ppm CBR,pH 7混合染料以流量1 mL/min流經模組一吸附MGO;因模組二吸附CBR,以0.01 N,pH 2之HCl水溶液為調整pH至CBR最適吸附條件以流量1 mL/min進料流經10 min進行吸附,由實驗結果可得知進料經由兩個模組及調pH值後,吸附率為MGO:90%及CBR:65%,結果與批次吸附結果比較得知吸附率相近,此流動程序與批次吸附效果可達到相當吸附率。zh_TW
dc.description.abstractThe removal of cationic dyes (Methyl Violet 2B, Malachite green oxalate) and anionic dyes (Cibacron Brilliant Red 3B-A, Cibacron Blue 3GA), from water using porous defatted rice bran particle mixed matrix membranes were successfully prepared by entrapment method in this study. One approach was to mix commercial polystyrene polymer with defatted rice bran particle in solvent for membrane preparation, mixed matrix membranes(with carboxylic acid group and amino group)The mixed matrix membranes of cationic exchange capacity and anionic exchange capacity are 660±16.5 μmol/g and 240.9±13.4 μmol/g that was investigated in this study. In the batch process, the adsorption isotherm results show that the paticle and mixed matrix membranes which the equilibrium of adsorption are 12 hr and 48 hr in the adsorption of dyes . Different desorption solutions were tested in the batch desorption process, and for both membranes, the best desorption performance(~90%) was achieved with an aqueous solution containing 1M KCl in 40% methanol(v/v). In the flow process with one piece of 47 mm diameter mixed matrix membrane at a flow rate of 1 mL/min, and can find the breakthrough points that is 7-25 mL (25-90 times bed volume).And the mixture solution (CBR and MGO) in the flow system adjusted the pH value and the membranes could select the adsorption of cationic or anion dyes. The results of mixture adsorption were 90 % with MGO and 65 % with CBR.en_US
dc.description.tableofcontents目錄 誌謝 I 中文摘要 II 英文摘要 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 第二章 文獻回顧 3 2.1染料簡介 3 2.1.1 以發色團分類 3 2.1.2 以染色分類 3 2.1.3 染料之酸性與鹼性 4 2.2染料廢水汙染問題 4 2.3染料廢水之處理方法 5 2.3.1 以農業副產品及植物廢棄物吸附汙染物之文獻 6 2.3.2 脫脂米糠 6 第三章 實驗方法 8 3.1 實驗藥品、材料 8 3.2 分析儀器 9 3.3 混合基材薄膜之製備 10 3.3.1 脫脂米糠顆粒之製備 10 3.3.2 混合基材薄膜(聚苯乙烯/20 wt.%脫脂米糠顆粒薄膜)之製備 10 3.4 脫脂米糠顆粒與混合基材薄膜之定性分析 10 3.4.1 以FTIR官能基分析 10 3.4.2 粒徑分布分析 11 3.4.3 界面電位分析 11 3.4.4 以SEM分析 11 3.4.5 薄膜中顆粒wt.%分析 11 3.4.6 離子交換容量 11 3.5 吸附性材料對染料之批次吸附/脫附實驗 12 3.5.1 批次吸附/脫附實驗 12 3.5.2 檢量線 13 3.5.3 吸附等溫曲線 13 3.6 混合基材薄膜對染料之流動吸附實驗 13 3.6.1 穿透曲線實驗 13 3.7 混合基材薄膜對混合染料溶液之流動吸附實驗 13 第四章 結果與討論 15 4.1 脫脂米糠顆粒與混合基材薄膜之性質分析結果 15 4.1.1 脫脂米糠顆粒之官能基分析 15 4.1.2 粒徑分布分析結果 15 4.1.3 表面電位分析結果 15 4.1.4 脫脂米糠顆粒之比表面積分析與離子交換容量結果 16 4.1.5 SEM分析結果 16 4.1.6 混合基材薄膜之性質分析結果 16 4.2 混合基材薄膜批次吸附/脫附結果 17 4.2.1 不同pH值下之染料批次吸附結果 17 4.2.2 脫脂米糠顆粒及混合基材薄膜批次吸附結果 17 4.2.3 脫脂米糠顆粒及混合基材薄膜批次脫附結果 18 4.3混合基材薄膜流動吸附結果 19 4.4混合基材薄膜雙染料溶液流動吸附結果 19 第五章 結論 20 參考文獻 21 表目錄 表一、 脫脂米糠顆粒之成分比例及脫脂米糠圖 26 表二、 本研究所使用染料之性質 27 表三、 在不同PH值下,汙染物解離程度及脫脂米糠顆粒表面電位 28 表四、 脫脂米糠顆粒之性質 29 表五、 本研究使用材料之性質分析 30 表六、 吸附等溫曲線之常數 31 表七、 本研究與文獻之吸附平衡常數和選擇因子比較 32 表八、 本研究與文獻之吸附量比較 33 圖目錄 圖一、 保麗龍球圖片及聚苯乙烯結構 34 圖二、 脫脂米糠顆粒之FTIR圖譜 35 圖三、 脫脂米糠顆粒之DLS粒徑圖譜 36 圖四、 脫脂米糠顆粒之ZETA POTENTIAL結果 37 圖五、 PS/20 WT.%脫脂米糠顆粒混合基材薄膜之SEM圖 38 圖六、 PS/20 WT.%脫脂米糠顆粒混合基材薄膜之TGA結果 39 圖七、 不同PH值下對汙染物之批次吸附移除率 40 圖八、 脫脂米糠顆粒與混合基材薄膜之染料批次吸附速率曲線 41 圖九、 脫脂米糠顆粒與混合基材薄膜之染料批次吸附等溫曲線 42 圖十、 混合基材薄膜之染料批次脫附結果 43 圖十一、流動程序流程圖 44 圖十二、混合基材薄膜之染料流動吸附速率曲線 45 圖十三、混合染料溶液流動程序流程圖 46 圖十四、混合染料溶液流動程序可見光光譜掃描結果圖 47zh_TW
dc.language.isozh_TWen_US
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908201313131300en_US
dc.subject聚苯乙烯zh_TW
dc.subjectPolystryeneen_US
dc.subject脫脂米糠顆粒zh_TW
dc.subject混合基材薄膜zh_TW
dc.subject陽離子染料zh_TW
dc.subject陰離子染料zh_TW
dc.subjectDefatted rice bran particlesen_US
dc.subjectMixed Matrix Membranesen_US
dc.subjectCationic dyesen_US
dc.subjectAnionic dyesen_US
dc.title聚苯乙烯/脫脂米糠顆粒混合基材薄膜之製備與其染料吸附應用zh_TW
dc.titlePreparation of Polystyrene/Defatted Rice Bran Particles Mixed Matrix Membranes for Adsorption of Dyesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
Appears in Collections:化學工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.