Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3256
標題: 表面聚合丙烯酸酯及苯乙烯高分子共聚物改質黏土製備丙烯酸酯與水之 Pickering 乳液及分析
Analysis and Fabrication of Pickering Emulsion Prepared by Acrylate and Styrene Copolymers Modified Clay as Emulsifier for Acrylate and Water
作者: 詹喬鈞
Chan, Chiau-Jiun
關鍵字: 改質黏土;Modified clay;蒙脫土;共聚物;皮克林乳液;MMT;copolymer;Pickering Emulsion
出版社: 化學工程學系所
引用: 1. 葉瑞銘,“奈米科技導論”, 高立圖書有限公司, 台北, 民國93年 2. E. P. Giannelis., Advnced Materials, 8, 29 (1996) 3. A. Okada, M. Kawasumi, Polymer Preprint, 28, 447 (1987) 4. N. P. Ashby, B. P. Binks, Physical Chemistry Chemical Physics, 2, 5640-5646 (2000) 5. S. A. F. Bon, P. J. Colver, Langmuir, 23, 8316-8322 (2007) 6. W. A. Deer, R. J. Howie, J. Zussman, Rock Forming Minerals, Vol. 3, Longmans, London (1962) 7. W. Ramsden, Proceedings of the Royal Society of London, 72, 156-164 (1903) 8. S. U. Pickering, Journal of Chemical Society Transactions, 91, 2001-2021 (1907) 9. S. Abend, N. Bonnke, U. Gutschner, G. Lagaly, Colloid Polymer Science , 276, 730-737 (1998) 10. N. Yan, J. H. Masliyah, Colloids Surfaces A : Physicochemical Engineering Aspects, 117, 15-25 (1996) 11. J. Thieme, S. Abend, G. Lagaly, Colloid & Polymer Science, 277, 257-260 (1999) 12. B. P. Binks, Current Opinion in Colloid & Interface Science, 7, 21-41 (2002) 13. E. M. Petrie, “Handbook of Adhesives and Sealants”, Vol. 2, McGraw-Hill, New York (2007) 14. C. A. May , “Epoxy resin”, Marcel Dekker Inc., New York (1988) 15. 陳劉旺, “工業塗料與高分子化學”, 高立圖書有限公司, 第249頁 至第274頁, 台北 (1997) 16. G. Diaconu, M. Paulis, J. R. Leiza, Polymer, 49, 2444-2454 (2008) 17. H. J. Naghash, R. Mohammadrahimpanah, Progress in Organic Coatings, 70, 32-38 (2011) 18. R. Ianchis, L. O. Cinteza, D. Donescu, C. Petcu, M. C. Corobea, R. Somoghi, M. Ghiurea, C. Spataru, Applied Clay Science, 52, 96-103 (2011) 19. C. R. Tseng, J. Y. Wu, H. Y. Lee, F. C. Chang, Journal of Applied Polymer Science, 85, 1370-1377 (2002) 20. L. Yu, L. Li, Z. Wei, F. Yue, Radiation Physics and Chemistry, 69, 467-471 (2004) 21. N. Negrete-Herrera, J. L. Putaux, E. Bourgeat-Lami, Progress in Solid State Chemistry, 34, 121-137 (2006) 22. S. Y. Zhang, Q. Lan, Q. Liu, J. Xu, D. J. Sun, Colloids and Surfaces A: Physicochemical Engineering Aspects, 317, 406-413 (2008) 23. Y. D. Luo, I. C. Chou, W. Y. Chiu, C. F. Lee, Journal of Polymer Science Part A: Polymer Chemistry, 47, 4435-4445 (2009) 24. J. Z. Wang, P. A. Wheeler, W. L. Jarrett, L. J. Mathias, Journal of Applied Polymer Science, 106, 1496-1506 (2007) 25. J. Zhang, K. Q. Chen, H. Y. Zhao, Journal of Polymer Science: Part A: Polymer Chemistry, 46, 2632-2639 (2008) 26. Y. F. Yang, L. Liu, J. Zhang, C. Li, H. Y. Zhao, Langmuir, 23, 2867-2873 (2007) 27. S. Guillot, F. Bergaya, C. Azevedo, F. Warmont, J. Tranchant, Journal of Colloid and Interface Science, 333, 563-569 (2009) 28. Y. Cui, J. S. Duijneveldt, Langmuir, 28, 1753-1757 (2012) 29. E. Zengeni, P. C. Hartmann, H. Pasch, ACS Applied Material and Interfaces, 4, 6957-6968 (2012) 30. A. Bonnefond, M. Paulis, S. A. F. Bon, J. R. Leiza, Langmuir, 29, 2397-2405 (2013) 31. J. Wang, G. P. Liu, L. Y. Wang, C. F. Li, J. Xu, D. J. Sun, Colloids and Surfaces A: Physicochemical Engineering Aspects, 353, 117-124, (2010) 32. R. F. A. Teixeira, H. S. McKenzie, A. A. Boyd, S. A. F. Bon, Macromolecules, 44, 7415-7422 (2011) 33. J. Zhang, L. Li, J. Wang, H. G. Sun, J. Xu, D. J. Sun, Langmuir, 28, 6769-6775 (2012) 34. M. Williams, S. P. Armes, D. W. York, Langmuir, 28, 1142-1148 (2012) 35. J. H. Chen, C. Y. Cheng, W. Y. Chiu, C. F. Lee, N. Y. Liang, European Polymer Journal, 44, 3271-3279 (2008) 36. Q. X. Gao, C. Y. Wang, H. X. Liu, C. H. Wang, X. X. Liu, Z. Tong, Polymer, 50, 2587-2594 (2009) 37. A. Walsh, K. L. Thompson, S. P. Armes, D. W. York, Langmuir, 26, 18039-18048 (2010) 38. I. C. Chou, C. F. Lee, W. Y. Chiu, Journal of Polymer Science Part A: Polymer Chemistry, 49, 3524-3535 (2011) 39. A. Pakdel, S. Pourmahdian, H. Eslami, Macromolecular Chemistry Physics, 213, 1944-1952 (2012) 40. Z. J. Wei, C. Y. Wang, H. Liu, S. W. Zou, Z. Tong, Colloids and Surfaces B: Biointerfaces, 91, 97-105 (2012) 41. C. H. Wu, W. Y. Chiu, T. M. Don, Polymer, 53, 1086-1092 (2012) 42. H. L. Tan, D. Z. Yang, J. Han, M. Xiao, J. Nie, Applied Clay Science, 42, 25-31 (2008) 43. T. Batista, A. Chiorcea-Paquim, A. Brett, C. C. Schmitt, M. G. Neumann, Applied Clay Science, 53, 27-32 (2011) 44. H. B. Yu, J. Peng, M. L. Zhai, J. Q. Li, G. S. Wei, J. L. Qiao, Radiation Physics and Chemistry, 76, 1746-1750 (2007) 45. 蔡茜茜,“含C=C雙鍵之蒙脫土之苯乙烯之聚合研究”,中興大學化學工程研究所碩士論文 (2001) 46. D. Cochin, F. Candau, R. Zana, Macromolecules, 26, 5755 (1993) 47. R. Simons, G. G. Qiao, C. E. Powell, S. A. Bateman, Langmuir, 26, 9023-9031 (2010) 48. B. A. Bhanvase, D. V. Pinjari, P. R. Gogate, S. H. Sonawane, A. B. Pandit , Chemical Engineering Journal , 181, 770-778 (2012) 49. 簡正豐,“聚苯乙烯/蒙脫土奈米複合材料界面改質之研究”, 中興大學化學工程研究所碩士論文 (2000) 50. S. Ramesh, K. H. Leen, K. Kumutha, A. K. Arof, Spectrochimica Acta Part A, 66, 1237-1242 (2007) 51. A. Pegoretti, A. Dorigato, M. Brugnara, A. Penati, European Polymer Journal, 44, 1662-1672 (2008) 52. 詹益池, “蒙脫土表面聚合苯乙烯製備奈米複合材料與物性分析”, 中興大學化學工程研究所碩士論文 (1999) 53. R. R. Tiwari, U. Natarajan, Journal of Applied Polymer Science, 110, 2374-2383 (2008) 54. R. Ruggerone, C. J. G. Plummer, N. N. Herrera, E. Bourgeat-Lami, J. A. E. Manson, European Polymer Journal, 45, 621-629 (2009) 55. J. Chen, H. L. Liu, X. Q. Hong, M. L. Wang, C. Cai, Q. F. Zhang, Colloid and Polymer Science, 290, 1955-1963 (2012) 56. S. Sain, B. B. Khatuna, Macromolecular Research, 19, 44-52 (2011) 57. M. Atai, L. Solhi, A. Nodehi, S. M. Mirabedini, S. Kasraei, K. Akbari, S. Babanzadeh, Dental Material, 25, 339-347 (2009) 58. M. Micusik, A. Bonnefond, M. Paulis, J. R. Leiza, European Polymer Journal, 48, 896-905 (2012) 59. D. W. Van Kervelen, “Properties of polymers”, Vol.7, Elsevier, Netherlands (1976) 60. C. Li, Q. Liu, Z. Mei, J. Wang, D. J. Sun, Journal of Colloid and Interface Science, 336, 314-321 (2009) 61. E. Zegeni, P. C. Hartmann, H. Pasch, Macromolecular Chemistry and Physics, 214, 62-75 (2013) 62. X. H. Qin, Y. Wu, K. M. Wang, H. L. Tan, J. Nie, Applied Clay Science, 45, 133-138 (2009) 63. J. Zhang, K. Chen, H. Zhao, Journal of Polymer Science Part A: Polymer Chemistry, 46, 2632-2639 (2008) 64. C. P. Whitby, D. Fornasiero, J. Ralston, Journal of Colloid and Interface Science, 323, 410-419 (2008)
摘要: 
本研究先將黏土(蒙脫土及Laponite)改質後,分散在1, 6-己二醇二丙烯酸酯(1, 6-hexanediol diacrylate, HDDA),加入純水後混合形成以改質黏土穩定油水界面的皮克林乳液(Pickering Emulsion),再以紫外光聚合法製備聚丙烯酸酯/黏土之奈米複合材料薄膜。黏土表面先吸附0.5倍陽離子交換當量(cationic exchange capacity, CEC)帶有乙烯基的VBDDAC (vinylbenzyl dodecyl dimethylammonium chloride)再吸附1.5倍陽離子交換當量的十六烷基三甲基溴化銨(cetyltrimethylammonium bromide, CTAB),使黏土表面吸附兩層界面劑形成吸附微胞。加入單體以吸附微胞聚合法(admicellar polymeri
-zation)聚合接枝於黏土表面,爾後以THF溶劑萃取溶解方式將未接枝在黏土表面的高分子移除。黏土依尺寸大小可分為蒙脫土及Laponite兩種,蒙脫土表面接枝不同重量比丙烯酸丁酯/甲基丙烯酸甲酯共聚物M5V15C-p-fBnM (f/n = 4/0, 2/2, 0/4);而Laponite表面接枝接枝不同重量比丙烯酸丁酯/甲基丙烯酸甲酯共聚物L5V15C-p-jBkM及不同重量比丙烯酸丁酯/苯乙烯L5V15C-p-jBkS共聚物 (j/k = 2/0, 1/1, 0/2)。
由FTIR得知,M5V15C-p-fBnM及L5V15C-p-jBkM、L5V15C
-p-jBkS經THF溶劑萃取前後,皆可測得高分子訊號峰,表示M5V15C-p-fBnM及L5V15C-p-jBkM、L5V15C-p-jBkS表面確實接枝高分子。由靜態接觸角分析得知,萃取前M5V15C-p-fBnM與水接觸角介於73°~86°,萃取後M5V15C-p-fBnM與水接觸角介於66°~74°;萃取前L5V15C-p-jBkM與水接觸角界於70°~ 80°,萃取後L5V15C-p-jBkM與水接觸角界於66° ~ 74°,萃取前L5V15C-p-jBkS與水接觸角界於63° ~ 80°,萃取後L5V15C-p-jBkS與水接觸角界於61° ~ 74°,可由上述數據兩個結論得知,第一為萃取前改質黏土的接觸角較萃取後大,表示溶劑萃取的確將未接枝於黏土表面的高分子萃取溶解,故萃取後改質黏土表面親油性降低,與水接觸角變小;第二為表面接枝丙烯酸酯側鏈碳基越長,親油性越好,則與水接觸角越大。
將M5V15C-p-fBnM及L5V15C-p-jBkM、L5V15C-p-jBkS分別分散在油相HDDA當中,加入純水後混合皆可形成以改質黏土穩定油水界面的W/O皮克林乳液。由光學顯微鏡觀察分析,萃取前M5V15C-p-4B製備的Pickering乳液粒徑為7 ~ 16 μm,較M5V15C-p
-4M乳液粒徑為4 ~ 11 μm大,是因為PMMA(δ=19.0 J1/2/cm3/2)的溶解度參數相較PBA(δ=18.3 J1/2/cm3/2)而言,與HDDA(δ=19.2 J1/2/cm3/2)相近。再者,萃取後的改質蒙脫土較萃取前的改質蒙脫土所製備的Pickering乳液粒徑小,如萃取前M5V15C-p-4B製備的 Pickering乳液粒徑為7 ~ 16 μm,萃取後則為6 ~ 15 μm,是因為未接枝在蒙脫土表面的高分子在油水界面上排列時產生立體空間障礙效應,造成蒙脫土在形成皮克林乳液時排列不緊密。
對於不同種類的共聚物而言,以L5V15C-p-1B1M製備的Pickering乳液粒徑為6 μm較L5V15C-p-1B1S製備的Pickering乳液粒徑為9 ~ 10 μm小,這是因為BA/MMA共聚物中的carbonyl group較BA/ST共聚物多,與HDDA的相容性較佳。除此之外,萃取前後改質Laponite所形成的Pickering乳液會因改質Laponite經溶劑萃取後表面高分子含量減少,而與HDDA相容性降低,使乳液粒徑變大。
在W/O Pickering乳液加入光起始劑,以UV光進行交聯硬化成丙烯酸酯/黏土薄膜複合材料,以XRD分析得知,薄膜複材中的改質黏土皆為脫層結構,以SEM斷裂面分析得知,M5V15C-p-2B2M
-C2W0.5薄膜複材中球狀斷裂面部分為W/O乳液結構,且乳液平均粒徑為11.8 μm,而附著在球壁上片狀結構為穩定油水界面的改質黏土。

The main purpose of this study is to fabricate acrylate/clay nanocomposites by UV polymerization. In the beginning, we modified two kinds clay (MMT and Laponite) by ad-micellar polymerization to prepare modified clay. Second, we used the modified clay to stabilize the interface of HDDA monomer and water to form W/O Pickering emulsion. Finally, W/O Pickering emulsion was photopolymerized by UV light to get acrylate/clay nanocomposites. The emulsion diameter, morphology were investigated with different the oil/water weight ratios and polymers grafted on clay (MMT and Laponite) surface.
Modified clay was prepared by adding 0.5 CEC (cationic exchange capacity) VBDDAC (vinylbenzyl dodecyl dimethyl ammoniumchloride ) and 1.5 CEC CTAB (cetyltrimethyl ammonium bromide) to form bilayer micelles on clay’s surface via cation exchange, and then we added acrylate monomer such like BA (butyl acrylate), MMA (methyl methacrylate) and ST (styrene), and polymerized on clay surface by ad-micellar polymerization. We also used THF solvent to remove un-grafted polymer on clay surface. Two kinds of polymers were synthesized. Polymer I (BA/MMA copolymer) with different weight ratios on MMT and Laponite surface are called M5V15C-p-fBnM (f/n = 4/0, 2/2, 0/4) and L5V15C-p-jBkM (j/k= 2/0, 1/1, 0/2). Polymer II (BA/ST copolymer) with different weight ratios grafted on Laponite surface are called L5V15C-p-jBkS (j/k= 2/0, 1/1, 0/2). After FTIR analysis, we found the modified clay with grafted copolymers showed the signal of transmittance of carbonyl group (1730 cm-1) and revealed copolymers grafted successfully onto the surface of clay. According to the static water contact angle measurement, before extraction by THF, the contact angle of M5V15C-p-fBnM increases with increasing BA fraction and is between 73°~ 86°. After extraction by THF, the contact angle of M5V15C-p-fBnM is between 66°~ 74° after removing un-grafted polymer on MMT surface. Contact angles of L5V15C-p-jBkM and L5V15C-p-jBkS get the same trend with modified MMT. We also found that the contact angle of L5V15C-p-jBkM is larger than L5V15C-p-jBkS because of copolymers with longer side chains.
Pickering emulsions were prepared in HDDA and water, and the size distribution of emulsion stabilized by M5V15C-p-4B was larger than that of stabilized by M5V15C-p-4M. This is because the solubility parameter of PMMA (δ=19.0 J1/2/cm3/2) is closer to HDDA (δ=19.2 J1/2/cm3/2) than PBA(δ=18.3 J1/2/cm3/2). Furthermore, the size distribution of Pickering emulsion stabilized by extracted modified-clay was smaller than that of un-extracted one, because the un-grafted polymer chains on clay would produce the steric effect when clay ranked in the oil/water interface.
Two copolymers as emulsifiers were used for preparing the Pickering emulsions containing acrylate and water. Using L5V15C-p
-jBkM as the emulsifier will obtain the smaller emulsion particles than using L5V15C-p-jBkS. This can be explained by more carbonyl groups in BA/MMA copolymer than that of BA/ST copolymer. Laponite modified by MA/MMA copolymer is more compatible with HDDA than with BA/ST copolymer. Furthermore, the emulsion stabilized by extracted L5V15C-p-jBkM and L5V15C-p-jBkS will obtain larger emulsion size than that of un-extrcated. From results of TGA analysis, extracted Laponite had lower polymer content than that of un-extracted one, so the compatibility between the extracted Laponite and HDDA is inferior to that of un-extracted Laponite and HDDA.
Finally, we used the UV light to polymerize W/O Pickering emulsion using M5V15C-p-fBnM, L5V15C-p-jBkM and L5V15C-p
-jBkS as emulsifier to get the solid film. From SEM analysis, we confirm the modified clay exists at the interface between water and HDDA.
URI: http://hdl.handle.net/11455/3256
其他識別: U0005-0608201313402800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.