Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorHsu, Chia-Yuanen_US
dc.identifier.citation參考文獻 [1] M. A. Green, "Silicon solar cells: evolution, high-efficiency design and efficiency enhancements," Semiconductor Science and Technology, Vol. 8, pp. 1-12 (1993). [2] M. Gratzel, "Photoelectrochemical cells," Nature, Vol. 414, pp. 338-344 (2001). [3] B. O''Regan, M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, Vol. 353, pp. 737-740 (1991). [4] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Gratzel, "Conversion of light to electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, Vol. 115, pp. 6382-6390 (1993). [5] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications," Journal of the American Ceramic Society, Vol. 80, pp. 3157-3171 (1997). [6] A. Kay and M. Gratzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder," Solar Energy Materials and Solar Cells, Vol. 44, pp. 99-117 (1996). [7] P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Gratzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," Journal of the American Chemical Society, Vol. 123, pp. 1613-1624 (2001). [8] M. Gratzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145-153 (2003). [9] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Gratzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, Vol. 334, pp. 629-634 (2011). [10] 童永樑,「染料敏化太陽電池的現況與發展(下)」,工業材料,第二百八十五卷,第146-149頁 (2010)。 [11] G. P. Smestad and M. Gratzel, "Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter," Journal of Chemical Education, Vol. 75, p. 752 (1998). [12] D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, and I. Riess, "Nature of Photovoltaic Action in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry B, Vol. 104, pp. 2053-2059 (2000). [13] 孟庆波、林原、戴松元,「染料敏化纳米晶薄膜太阳电池」,物理, 第三十三卷,第三期,第177-181頁 (2004)。 [14] K. Kalyanasundaram and M. Gratzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices," Coordination Chemistry Reviews, Vol. 177, pp. 347-414 (1998). [15] J. Chae and M. Kang, "Cubic titanium dioxide photoanode for dye-sensitized solar cells," Journal of Power Sources, Vol. 196, pp. 4143-4151 (2011). [16] A. Hironori, Y. Takeshi, T. Akihito, and A. Shinya, presented at the Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE on 4th World Conference, 2006 (unpublished). [17] S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, "Influence of scattering layers on efficiency of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 90, pp. 1176-1188 (2006). [18] Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews, Vol. 248, pp. 1381-1389 (2004). [19] K.-M. Lee, V. Suryanarayanan, and K.-C. Ho, "A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 91, pp. 1416-1420 (2007). [20] 劉茂煌,「奈米光電池」,工業材料,第二百零三卷,第91頁 (2003)。 [21] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 70, pp. 85-101 (2001). [22] N. Papageorgiou, "An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media," Journal of The Electrochemical Society, Vol. 144, p. 876 (1997). [23] T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-M. Chen, and H.-S. Shiu, "Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium−Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells," The Journal of Physical Chemistry C, Vol. 111, pp. 4847-4853 (2007). [24] S.-A. Sheppard, S. A. Campbell, J. R. Smith, G. W. Lloyd, F. C. Walsh, and T. R. Ralph, "Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials," Analyst, Vol. 123, pp. 1923-1929 (1998). [25] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, "Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell," Journal of Electroanalytical Chemistry, Vol. 570, pp. 257-263 (2004). [26] S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo, and D.-Y. Kim, "Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells," Electrochimica Acta, Vol. 51, pp. 3814-3819 (2006). [27] C.-M. Chen, C.-H. Chen, and T.-C. Wei, "Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-sensitized solar cells," Electrochimica Acta, Vol. 55, pp. 1687-1695 (2010). [28] C.-M. Chen, C.-H. Chen, S.-J. Cherng, and T.-C. Wei, "Electroless deposition of platinum on indium tin oxide glass as the counterelectrode for dye-sensitized solar cells," Materials Chemistry and Physics, Vol. 124, pp. 173-178 (2010). [29] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, Vol. 12, pp. 1662-1665 (2010). [30] R. Rosal, A. Rodriguez, M. S. Gonzalo, and E. Garcia-Calvo, "Catalytic ozonation of naproxen and carbamazepine on titanium dioxide," Applied Catalysis B: Environmental, Vol. 84, pp. 48-57 (2008). [31] C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, "A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns," IEEE Transactions on Electron Devices, Vol. 48, pp. 840-844 (2001). [32] 蔡進譯,「超高效率太陽電池-從愛因斯坦的光電效應談起」,物理雙月刊,第廿七卷,第五期,第701-719頁 (2005)。 [33] S. Lee, J. H. Noh, S.-T. Bae, I.-S. Cho, J. Y. Kim, H. Shin, J.-K. Lee, H. S. Jung, and K. S. Hong, "Indium−Tin−Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices," The Journal of Physical Chemistry C, Vol. 113, pp. 7443-7447 (2009). [34] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, "Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:  Characterization by Intensity-Modulated Photocurrent Spectroscopy," The Journal of Physical Chemistry B, Vol. 101, pp. 10281-10289 (1997). [35] J. Bandara and J. P. Yasomanee, "P-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells," Semiconductor Science and Technology, Vol. 22, pp. 20-24 (2007). [36] K. Zhu, E. A. Schiff, N. G. Park, J. van de Lagemaat, and A. J. Frank, "Determining the locus for photocarrier recombination in dye-sensitized solar cells," Applied Physics Letters, Vol. 80, pp. 685-687 (2002). [37] J. van de Lagemaat, N. G. Park, and A. J. Frank, "Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Electrical Impedance and Optical Modulation Techniques," The Journal of Physical Chemistry B, Vol. 104, pp. 2044-2052 (2000). [38] K. Schwarzburg and F. Willig, "Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell," The Journal of Physical Chemistry B, Vol. 103, pp. 5743-5746 (1999). [39] P. J. Cameron and L. M. Peter, "Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells," The Journal of Physical Chemistry B, Vol. 107, pp. 14394-14400 (2003). [40] S. Hore and R. Kern, "Implication of device functioning due to back reaction of electrons via the conducting glass substrate in dye sensitized solar cells," Applied Physics Letters, Vol. 87, p. 263504 (2005). [41] A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, and M. Gratzel, "The Function of a TiO2 Compact Layer in Dye-Sensitized Solar Cells Incorporating “Planar” Organic Dyes," Nano Letters, Vol. 8, pp. 977-981 (2008). [42] T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, "High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes," Journal of the American Chemical Society, Vol. 126, pp. 12218-12219 (2004). [43] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, and M. Gratzel, "Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells," Chemical Communications, Vol. 0, pp. 4351-4353 (2005). [44] J. N. Hart, D. Menzies, Y.-B. Cheng, G. P. Simon, and L. Spiccia, "TiO2 sol–gel blocking layers for dye-sensitized solar cells," Comptes Rendus Chimie, Vol. 9, pp. 622-626 (2006). [45] J.-K. Kim, H. Seo, M.-K. Son, I. Shin, J.-H. Choi, S.-W. Choi, and H.-J. Kim, "The optimization of TiO2 compact layer in dye-sensitized solar cell by the analysis of performance and internal impedance," physica status solidi (c), Vol. 8, pp. 634-636 (2011). [46] M.-S. Wu, C.-H. Tsai, J.-J. Jow, and T.-C. Wei, "Enhanced performance of dye-sensitized solar cell via surface modification of mesoporous TiO2 photoanode with electrodeposited thin TiO2 layer," Electrochimica Acta, Vol. 56, pp. 8906-8911 (2011). [47] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, and B. Park, "The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell," Current Applied Physics, Vol. 12, pp. 737-741 (2012). [48] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, and M. Gratzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films, Vol. 516, pp. 4613-4619 (2008). [49] L. Vesce, R. Riccitelli, G. Soscia, T. M. Brown, A. Di Carlo, and A. Reale, "Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment," Journal of Non-Crystalline Solids, Vol. 356, pp. 1958-1961 (2010). [50] S. G. Chen, S. Chappel, Y. Diamant, and A. Zaban, "Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells," Chemistry of Materials, Vol. 13, pp. 4629-4634 (2001). [51] J. Xia, N. Masaki, K. Jiang, and S. Yanagida, "Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells," Chemical Communications, Vol. 0, pp. 138-140 (2007). [52] K.-S. Ahn, M.-S. Kang, J.-K. Lee, B.-C. Shin, and J.-W. Lee, "Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells," Applied Physics Letters, Vol. 89, p. 013103 (2006). [53] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, "The superiority of Ti plate as the substrate of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 91, pp. 1176-1181 (2007). [54] N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gratzel, "Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films," Journal of the American Chemical Society, Vol. 110, pp. 1216-1220 (1988). [55] K. Fan, T. Peng, B. Chai, J. Chen, and K. Dai, "Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells," Electrochimica Acta, Vol. 55, pp. 5239-5244 (2010). [56] C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, and J.-M. Wu, "Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates," Journal of Materials Chemistry, Vol. 21, p. 5114 (2011). [57] C.-H. Lee, P.-T. Hsiao, M.-D. Lu, and J.-M. Wu, "Light harvesting enhancement for Ti-based dye-sensitized solar cells by introducing a grooved texture underlayer," RSC Advances, Vol. 3, p. 2216 (2013). [58] T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, and S.-Y. Suen, "An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination," Progress in Photovoltaics: Research and Applications, Vol. 21, pp. 226-231 (2013). [59] J. E. Boercker, E. Enache-Pommer, and E. S. Aydil, "Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells," Nanotechnology, Vol. 19, p. 095604 (2008). [60] F. Shao, J. Sun, L. Gao, S. Yang, and J. Luo, "Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells," ACS Appl Mater Interfaces, Vol. 3, pp. 2148-2153(2011). [61] J. An, W. Guo, and T. Ma, "Enhanced Photoconversion Efficiency of All-Flexible Dye-Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer," Small, Vol. 8, pp. 3427-3431 (2012). [62] K. Fan, J. Chen, F. Yang, and T. Peng, "Self-organized film of ultra-fine TiO2 nanotubes and its application to dye-sensitized solar cells on a flexible Ti-foil substrate," Journal of Materials Chemistry, Vol. 22, pp. 4681-4686 (2012). [63] P. Tengvall, H. Elwing, L. Sjoqvist, I. Lundstrom, and L. M. Bjursten, "Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium," Biomaterials, Vol. 10, pp. 118-120 (1989). [64] P. Tengvall, I. Lundstrom, L. Sjoqvist, H. Elwing, and L. M. Bjursten, "Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants," Biomaterials, Vol. 10, pp. 166-175 (1989). [65] J. D. Sorge and D. P. Birnie, "Characterization of Structures Grown Hydrothermally on Titanium Metal for Solar Application," in Processing of Nanoparticle Structures and Composites, ed: John Wiley & Sons, Inc., pp. 45-50 (2009). [66] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, and F. C. Walsh, "The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes," Journal of Materials Chemistry, Vol. 14, pp. 3370-3377 (2004). [67] U.-H. L. Yongnan Zhao, Myungkoo Suh, Young-Uk Kwon, "Synthesis and Characterization of Highly Crystalline Anatase Nanowire Arrays," Bulletin of the Korean Society Vol. 25, pp. 1341-1345 (2004). [68] S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Gratzel, "Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency," Progress in Photovoltaics: Research and Applications, Vol. 14, pp. 589-601 (2006). [69] Y. J. Kim, Y. H. Lee, M. H. Lee, H. J. Kim, J. H. Pan, G. I. Lim, Y. S. Choi, K. Kim, N.-G. Park, C. Lee, and W. I. Lee, "Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2 Thin Film," Langmuir, Vol. 24, pp. 13225-13230 (2008). [70] B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, "ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells," Solar Energy Materials and Solar Cells, Vol. 92, pp. 873-877 (2008). [71] B. H. Lee, M. Y. Song, S.-Y. Jang, S. M. Jo, S.-Y. Kwak, and D. Y. Kim, "Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes," The Journal of Physical Chemistry C, Vol. 113, pp. 21453-21457 (2009).en_US
dc.description.abstract以鈦金屬片作為染料敏化太陽能電池(dye-sensitized solar cell, DSSC)之光電極基材並利用H2O2 (hydrogen peroxide)預處理鈦金屬片表面,其表面會形成多孔網狀結構之二氧化鈦薄膜,此結構能提供更大的接附面積使後續網印TiO2顆粒與鈦金屬基材之間的接附性更佳,並幫助電子收集與傳導而得到更大的短路電流密度(short-circuit current density, JSC),使電池之光電轉換效率提升。 本研究發現另利用NaOH (sodium hydroxide)溶液在Teflon-lined stainless steel autoclave裝置中於高溫之下處理此多孔網狀結構並將其去除,使表面露出多孔網狀結構底層之緻密的氧化鈦顆粒層。電池藉由此氧化鈦層可改善其電子擴散途徑(electron diffusion length, Ln)及電子擴散係數(electron diffusion coefficient, Dn),經實驗證明可降低再結合反應發生之機率並且使電子更快速注入基材之導電層,故電池的JSC及填充因子(fill factor, FF)增加,明顯地抑制暗電流產生,進而使電池之光電轉換效率獲得改善。zh_TW
dc.description.abstractTitanium (Ti) foil was selected as a photoanode substrate for dye-sensitized solar cell (DSSC). Pretreatment of H2O2 (hydrogen peroxide) etching of Ti results in the formation of porous TiO2 nanostructure on the Ti surface. The porous nanostructure enhances the electrical contact between subsequent screen-printed TiO2 mesoporous film and Ti substrate due to large surface area. Electron collection and transport are improved, resulting in high short-circuit current density (JSC) and thereby improving the power conversion efficiency of DSSC. In this study, we find that by soaking the H2O2-treated Ti foil in the NaOH (sodium hydroxide) solution in Teflon-lined stainless steel autoclave device at high temperature, the porous TiO2 nanostructure can be removed, exposing the underlying TiO2 nanoparticle layer. The electron diffusion length (Ln) and electron diffusion coefficient (Dn) are improved by this compact TiO2 nanoparticle layer. The charge recombination reaction is suppressed, facilitating the electron injection into the conducting layer of substrate. The JSC and fill factor (FF) are improved and accordingly the power conversion efficiency of DSSC is improved.en_US
dc.description.tableofcontents目錄 誌謝辭 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1-1 前言 1 1-2 研究動機 2 第2章 文獻回顧 4 2-1 染料敏化太陽能電池之構造與運作原理 4 2-2 染料敏化太陽能電池之結構介紹 8 2-2-1 金屬氧化物半導體 8 2-2-2 光電極-TiO2奈米顆粒薄膜 9 2-2-3 染料分子 11 2-2-4 電解液 12 2-2-5 對電極 13 2-3 電池光電性能與電化學分析 14 2-3-1 量測之光源 14 2-3-2 光電轉換效率之計算方法 14 2-3-3 電化學交流阻抗分析 17 2-3-4 IMPS/IMVS分析 17 2-4 光電極基材介紹 19 2-4-1 底層(Underlayer)簡介 19 2-4-2 FTO(fluorine-doped tin oxide)基材 22 2-4-3 鈦基材 30 2-4-4 化學氧化處理鈦基材及其應用 40 第3章 實驗方法與設備 44 3-1 實驗儀器與設備 44 3-2 實驗方法 45 3-2-1 化學前處理鈦金屬片為光電極基材 45 3-2-2 製備PVP-Pt對電極 47 3-2-3 染料之製備極浸泡染料之過程 47 3-2-4 液態電解液之製備 48 3-2-5 熱封膜(Surlyn) 48 3-3 分析儀器及方法 49 3-3-1 太陽能電池光電性質分析 49 3-3-2 電化學交流阻抗(EIS)圖譜分析 49 3-3-3 掃描式電子顯微鏡(SEM)之形態分析 49 3-3-4 X光繞射分析儀(XRD) 49 3-3-5 原子力顯微鏡(AFM)之表面分析 49 3-3-6 紫外光-可見光光譜儀 50 3-3-7 穿透式電子顯微鏡(TEM)之分析 50 第4章 結果與討論 51 4-1 化學前處理鈦金屬基材 51 4-1-1 NaOH處理鈦金屬基材 52 4-1-2 不同時間之H2O2氧化蝕刻對厚度造成之影響 54 4-1-3 TiCl4前處理鈦金屬片 56 4-2 以TEM及XRD分析經化學處理生成之氧化鈦層 59 4-3 製備PVP-Pt對電極 62 4-4 染料敏化太陽能電池之光電性能表現 63 4-5 不同種類之光電極基材對電池效能影響之總整理與比較 67 4-6 鈦金屬基材表面AFM分析 70 4-7 電化學交流阻抗分析 72 4-8 IMVS/IMPS分析 74 第5章 結論 76 參考文獻 77zh_TW
dc.subjectdye-sensitized solar cellen_US
dc.subjectchemical treatmenten_US
dc.titleStudy of Formation of Titania Layer by Chemical Treatment and Its Application in Dye Sensitized Solar Cellsen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:化學工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.