Please use this identifier to cite or link to this item:
標題: 高壓二氧化碳抗溶沉澱高分子溶液以包覆熱敏感蜂膠活性物質
High Pressure Carbon Dioxide Anti-Solvent Precipitation on Encapsulation of Thermolabile Propolis Flavonoids in Polymer Solutions
作者: 楊尚融
Yang, Shang-Jung
關鍵字: 蜂膠;Propolis;聚乙二醇;微米顆粒;高壓二氧化碳抗溶結晶;包覆;Polyethylene glycol;Micro-sized amorphous particulates;Pressurized anti-solvent co-precipitation;Encapsulation
出版社: 化學工程學系所
引用: Ansari, M. T., Haneef, M., and Murtaza, G., “Solid dispersions of artemisinin in polyvinyl pyrrolidone and polyethylene glycol,” Advances in Clinical and Experimental Medicine,19, 745-754 (2010.) Argemi, A., Vega, A., Subra-Paternault, P., and Saurina, J., “Characterization of azacytidine/poly(L-lactic) acid particles prepared by supercritical antisolvent precipitation,” Journal of Pharmaceutical and Biomedical Analysis, 50, 847-852 (2009) Arias, M. J., Gines, J. M., Moyano, J. R., Perezbarrales, M. J., Vela, M. T., and Rabasco, A. M., “Improvement of the diuretic effect of triamterene via solid dispersion technique with PEG-4000,” European Journal of Drug Metabolism and Pharmacokinetics, 19, 295-302 (1994) Ban, J., Popovic, S., and Maysinger, D., “Cytostatic effects of propolis in vitro,” Acta Pharmaceutica Jugoslavica, 33, 245-255 (1983) Bankova, V. S., de Castro, S. L., and Marcucci, M. C., “Propolis: recent advances in chemistry and plant origin,” Apidologie, 31, 3-15 (2000) Berche, B., Henkel, M., and Kenna, R., “Critical phenomena: 150 years since Cagniard de la Tour,” Revista Brasileira De Ensino De Fisica, 31 (2009) Caroline, O. S. F., Charlene, S. C. G., Gambato G., Marcia, D. O. S., Mirian S., Sidnei M., Francine, F. P., Fabiana, K. S., Tiago, C., Sibele, B., Odir, A. D., Joao, A. Pegas, H., and Mariana, R. E. , “Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis,” Food and Chemical Toxicology, 52, 137–142 (2013) Chang, C. C., Yang, M. H., Wen, H. M., and Chern, J. C., “Estimation of total flavonoid content in propolis by two complementary colorimetric methods,” Journal of Food and Drug Analysis, 10, 178-182 (2002) Chang, L. P., Cheng, J. H., Hsu , S. L., Liau, B. C., Wu, T. M., Chang, M. J., “Application of continuous supercritical anti-solvents for rapid recrystallization and purification of zeaxanthin dipalmitates from de-glycosides of Lycium barbarum fruits,” Journal of Supercritical Fluids, 57, 155-161 (2011) Cho, Y. C., Cheng, J. H., Hsu, S. L.,Hong, S.E.,LEE, T. M., Chang, M. J., “Countercurrent flow of supercritical anti-solvent in the production of pure xanthophylls from Nannochloropsis oculata. ,” Journal of Chromatography A, 1250, 85-91 (2012 Cooper, A. I., “Polymer synthesis and processing using supercritical carbon dioxide,” Journal of Materials Chemistry, 10, 207-234 (2000) Decastro, S. L., and Higashi, K. O., “Effect of different formulations of propolis on mice infected with trypanosoma-cruzi,” Journal of Ethnopharmacology, 46, 55-58 (1995) Elvassore, N., Bertucco, A., and Caliceti, P., “Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques,” Journal of Pharmaceutical Sciences, 90, 1628-1636 (2001) Fontana, J. D., Passos, M., dos Santos, M. H. R., Fontana, C. K., Oliveira, B. H., Schause, L., Pontarolo, R., Barbirato, M. A., Ruggiero, M. A., and Lancas, F. M., “Profiling propolis flavonoids by means of micellar electrokinetic capillary chromatography, capillary gas chromatography and bactericidal action,” Chromatographia, 52, 147-151 (2000) Gheldof, N., Wang, X. H., and Engeseth, N. J., “Identification and quantification of antioxidant components of honeys from various floral sources,” Journal of Agricultural and Food Chemistry, 50, 5870-5877 (2002) Herold, D. A., Keil, K., and Bruns, D. E., “Oxidation of polyethylene glycols by alcohol-dehydrogenase,” Biochemical Pharmacology, 38, 73-76 (1989) Hilhorst, M. J., Somsen, G. W., and de Jong, G. J., “Potential of capillary electrophoresis for the profiling of propolis,” Hrc-Journal of High Resolution Chromatography, 21, 608-612 (1998) Hollman, P. C. H., Hertog, M. G. L., and Katan, M. B., “Analysis and health effects of flavonoids,” Food Chemistry, 57, 43-46 (1996) Ilhan, A., Akyol, O., Gurel, A., Armutcu, F., Iraz, M., and Oztas, E., “Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats,” Free Radical Biology and Medicine, 37, 386-394 (2004) Jia, Z.S.,Tang, M.C., Wu, J.M., “ The determination of flavonoid contents in mulverry and their scavenging effects on superoxide radicals,” Food Chemistry, 64, 555-559 (1999) Kalogeropoulos, N., Konteles, S., Mourtzinos, I., Troullidou, E., Chiou, A., and Karathanos, V. T., “Encapsulation of complex extracts in beta-cyclodextrin: An application to propolis ethanolic extract,” Journal of Microencapsulation, 26, 603-613 (2009) Kang, Y. Q., Wu, J., Yin, G. F., Huang, Z. B., Liao, X. M., Yao, Y. D., Ouyang, P., Wang, H. J., and Yang, Q., “Characterization and biological evaluation of paclitaxel-loaded poly(L-lactic acid) microparticles prepared by supercritical CO(2),” Langmuir, 24, 7432-7441 (2008) Kelly, C. A., Naylor, A., Illum, L., Shakesheff, K. M., and Howdle, S. M., “Supercritical CO2: A clean and low temperature approach to blending PDLLA and PEG,” Advanced Functional Materials, 22, 1684-1691 (2012) Kumazawa, S., Hamasaka, T., and Nakayama, T., “Antioxidant activity of propolis of various geographic origins,” Food Chemistry, 84, 329-339 (2004) Kuropatnicki, A. K., Szliszka, E., and Krol, W., “Historical aspects of propolis research in modern times,” Evidence-Based Complementary and Alternative Medicine, 11, (2013) Lahouel, M., Boulkour, S., Segueni, N., and Fillastre, J. P., “The flavonoids effect against vinblastine, cyclophosphamide and paracetamol toxicity by inhibition of lipid-peroxydation and increasing liver glutathione concentration,” Pathologie Biologie, 52, 314-322 (2004) Lee, H. P., and Ryu, W., “Wet microcontact printing (mu CP) for micro-reservoir drug delivery systems,” Biofabrication, 5, (2013) Lee, S., Kim, K. S., Park, Y., Shin, K. H., and Kim, B. K., “In vivo anti-oxidant activities of tectochrysin,” Archives of Pharmacal Research, 26, 43-46 (2003) Leuner, C., and Dressman, J., “Improving drug solubility for oral delivery using solid dispersions,” European Journal of Pharmaceutics and Biopharmaceutics, 50, 47-60 (2000) Liu, P. F., Yu, H., Sun, Y., Zhu, M. J., and Duan, Y. R., “A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery,” Biomaterials, 33, 4403-4412 (2012) Marcucci, M. C., “Propolis - chemical-composition, biological properties and therapeutic activity,” Apidologie, 26, 83-99 (1995) Marcucci, M. C., Ferreres, F., Garcia-Viguera, C., Bankova, V. S., De Castro, S. L., Dantas, A. P., Valente, P. H. M., and Paulino, N., “Phenolic compounds from Brazilian propolis with pharmacological activities,” Journal of Ethnopharmacology, 74, 105-112 (2001) Mahmoud, L., “Biological activity of bee propolis in health and disease,” Asian Pacific Journal of Cancer Prevention, 7, 22-31 (2006) Marquez, N., Sancho, R., Macho, A., Calzado, M. A., Fiebich, B. L., and Munoz, E., “Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-kappa B transcription factors,” Journal of Pharmacology and Experimental Therapeutics, 308, 993-1001 (2004) Menghinello, P., Cucchiarini, L., Palma, F., Agostini, D., Dacha, M., and Stocchi, V., “Simultaneous analysis of flavonoid aglycones in natural products using an RP-HPLC method,” Journal of Liquid Chromatography and Related Technologies, 22, 3007-3018 (1999) Mishima, S., Ono, Y., Araki, Y., Akao, Y., and Nozawa, Y., “Two related cinnamic acid derivatives from Brazilian honey bee propolis, baccharin and drupanin, induce growth inhibition in allografted sarcoma S-180 in mice,” Biological and Pharmaceutical Bulletin, 28, 1025-1030 (2005) Park, E. H., and Kahng, J. H., “Suppressive effects of propolis in rat adjuvant arthritis,” Archives of Pharmacal Research, 22, 554-558 (1999) Peracchia, M. T., Harnisch, S., Pinto-Alphandary, H., Gulik, A., Dedieu, J. C., Desmaele, D., d''Angelo, J., Muller, R. H., and Couvreur, P., “Visualization of in vitro protein-rejecting properties of PEGylated stealth (R) polycyanoacrylate nanoparticles,” Biomaterials, 20, 1269-1275 (1999) Patomchaiviwat, V., Paeratakul, O., Kulvanich, P., “ Formation of inhalable rifampicin–poly(L-lactide) microparticles by supercritical anti-solvent process,” AAPS Pharm Sci Technology, 9, 1119-1129 (2008) Ramos, A. F. N., and Miranda, J. L., “Propolis: A review of its anti-inflammatory and healing actions,” Journal of Venomous Animals and Toxins Including Tropical Diseases, 13, 697-710 (2007) Raveendran, P., Ikushima, Y., and Wallen, S. L., “Polar attributes of supercritical carbon dioxide,” Accounts of Chemical Research, 38, 478-485 (2005) Richter, A. W., and Akerblom, E., “Antibodies against polyethylene-glycol produced in animals by immunization with monomethoxy polyethylene-glycol modified proteins,” International Archives of Allergy and Applied Immunology, 70, 124-131 (1983) Savickas, A., Majiene, D., Ramanauskiene, K., Pavilonis, A., Muselik, J., and Masteikova, R., “Chemical composition and antimicrobial activity of Lithuanian and Czech Propolis,” Biologija, 4, 59-63 (2005) Srinivasa, P. C., Ramesh, M. N., and Tharanathan, R. N., “Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films,” Food Hydrocolloids, 21, 1113-1122 (2007) Ugur, A., and Arslan, T., “An in vitro study on antimicrobial activity of propolis from Mugla province of Turkey,” Journal of Medicinal Food, 7, 90-94 (2004) Woisky, R. G., and Salatino, A., “Analysis of propolis: some parameters and procedures for chemical quality control,” Journal of Apicultural Research, 37, 99-105 (1998) Woo, K. J., Jeong, Y. J., Inoue, H., Park, J. W., and Kwon, T. K., “Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity,” Febs Letters, 579, 705-711 (2005) Zhou, J. H., Xue, X. F., Li, Y., Zhang, J. Z., Chen, F., Wu, L. M., Chen, L. Z., and Zhao, J., “Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction,” Food Chemistry, 115, 1074-1080 (2009) 朱燕華, “類黃酮之介紹,” 食品工業月刊, 30, 1-5 (1998) 張禮斌, “管柱層析與抗溶結晶純化枸杞玉米黃素對棕梠酸酯及對視網膜上皮色素細胞株增生作用,” 碩士論文, 國立中興大學化學工程研究 所 (2011)
本論文研究以高壓二氧化碳抗溶乙醇溶液共沉澱法,產製親水性的聚乙二醇包覆蜂膠的微米顆粒原料。首先製做含78%蜂膠類黃酮的乙醇水溶液及作為抗溶共沉澱法的進料溶液,乙醇水溶液在高壓二氧化碳抗溶共沉澱法預實驗時是以近飽和的20 mg/ml蜂膠乙醇溶液,各別混合10mg/ml 至30 mg/ml濃度的聚乙二醇乙醇溶液,藉由改變壓力,抗溶時間,二氧化碳流速,探討對共沉澱物載藥量及總黃酮量的影響。接著壓力及聚乙二醇蜂膠進料濃度比,進行兩變數的應答曲面實驗設計法。探討兩變數對共沉澱包覆物中總黃酮量、沉澱物之單位載藥量、沉澱物之總產率、沉澱物之類黃酮回收率所造成的影響。實驗結果顯示沉澱物之單位載藥量與沉澱物之總產率呈現相反趨勢的相關性。設計軟體預測值與實驗值,均指出如以沉澱物之單位載藥量(%)與共沉澱包覆物中總黃酮量為最佳應答值時(EXP2),可得沉澱物含50%的類黃酮(mg/g),即34.3毫克包覆物中含有17.2毫克的類黃酮。以沉澱物之總產率、沉澱物之類黃酮回收為最佳應答值時(EXP3),共沉澱物之總產率可達88%,沉澱物之類黃酮回收率有84%。歸納發現壓力影響不大,但蜂膠與聚乙二醇的進料濃度比,對高壓流體共沉澱包覆物的載藥量與共沉澱量影響甚大。電子顯微鏡顯示聚乙二醇包覆蜂膠共沉澱物,呈現圓球狀的微米尺寸顆粒聚集。從溶離度實驗結果,被聚乙二醇包覆的蜂膠,於pH 7.4模擬的溶解液,溶解效果比蜂膠萃取物要好,表示親水性的聚乙二醇與蜂膠共沉澱後產生連接,溶於水時更容易由聚乙二醇端將蜂膠溶入水中。

In this study, pressurized carbon dioxide anti-solvent (PAS) co-precipitation method was applied for encapsulation of propolis by using water soluble poly ethylene glycol (PEG). Initially, 78% of flavonoids were recovered in the ethanol extracts from the Brazilian propolis. Several preliminary experiments of the PAS co-precipitations were carried out in searching for major process conditions influencing the drug content of propolis in PEG. Feed concentrations of propolis from 10 mg/ml to 20 mg/ml and Feed concentrations of PEG from 10 mg/ml to 30 mg/ml were investigated. The PAS pressure and the feed concentration ratio of the PEG to propolis were found to be significant. Two-factor experimental designed PAS co-precipitations in the influence on the recovery of flavonoids, drug content, total yield of the precipitates showed that the drug content and total yield of the precipitates are conversely in the PAS process. The micro-sized amorphous particulates of the propolis encapsulated on the surface of PEG were evidenced by the x-ray diffraction patterns. It was also presented that the 50% of drug content and total weight 17.7 mg of the flavonoids were successfully encapsulated by 25.5 mg of PEG in PAS. The maximal total yield of the PAS precipitation attained 64% and the recovery of total recovery of flavonoids achieved 60%. In summary, the concentration ratio of PEG to propolis in feed is significant on the influence of the drug content than that of the pressure in the PAS encapsulation process. Micro-sized co-precipitated particulates are found to be nearly spherical and aggregated.
其他識別: U0005-2908201309565800
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.