Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33146
標題: 土石流潛勢溪流土砂生產分析技術之研究
Analysis Techniques of Sediment Yields of Potential Debris Flow
作者: 徐森彥
Hsu, Sen-Yen
關鍵字: 土砂災害;sediment-related hazard;土石流;FLO-2D;WINHSPF;土石流災害模擬;集水區土砂生產量;WINHSPF;TRIGRS;FLO-2D sediment yields;debris-flow potential watersheds
出版社: 水土保持學系所
引用: 參考文獻 一、中文部份 1. 中興工程顧問社(2005、2006、2007、2008、2009、2010),「易淹水地區上游集水區地質調查與資料庫建置-集水區水文地質對坡地穩定性影響之調查評估」,經濟部中央地質調查所。 2. 中興工程顧問社(2006),「大甲溪流域德基至馬鞍段集水區崩塌地暨土石流潛勢調查及因應對策研究報告,台灣電力公司。 3. 中興工程顧問社(2008),「花蓮集水區土砂影響範圍及災損評估分析」,行政院農業委員會水土保持局,花蓮分局。 4. 中興工程顧問社(2009),「秀林地區優先治理土石流潛勢溪流整理規劃」,行政院農業委員會水土保持局,花蓮分局。 5. 中興工程顧問社(2011),「100年土石流易致災因子分析與風險管理應用」,行政院農業委員會水土保持局。 6. 方勁松、方樂潤(1997),「洪水保險研究-洪災風險分析與保險費率制定」,水利經濟期刊,第二期,中國水利經濟研究會。 7. 王如意、鄭思蘋(2002-2003),「水災損失評估系統模式之建立」,經濟部水利署研究計畫報告,國立台灣大學生物環境系統工程學系。 8. 打荻珠男(1971),「ひと雨による山腹崩壞について」,新砂防(79):21-34。 9. 江陽聖、陳錕山、梁隆鑫、王志添(2007),「以SPOT影像及數值地形模型推估集水區泥砂產量」,航測及遙測學刊,第十二卷,第四期,第447-456頁。 10. 行政院農業委員會水土保持局(2008),「土石流防災歷年成果專輯」。 11. 吳政貞(2003),「土石流流況數值分析-以溪頭為例」,碩士論文,國立台灣大學土木工程研究所。 12. 吳嘉俊(2011),「由通用土壤流失公式的演進談坡度因子的問題」,水保技術,6(1),55-62。 13. 李欣輯(2006),「土石流防災方法成本效益評估方法之研究」,博士論文,國立台灣大學土木工程研究所。 14. 李振裕(2004),「集水區水砂生產及輸送之整合研究」,碩士論文,國立成功大學水利暨海洋工程研究所。 15. 林伯勳、許振崑、冀樹勇(2011),「集水區土壤厚度經驗式應用分析」,中興工程季刊,第111期,35-45。 16. 林俐玲、陳品岡(2010),「修正版通用土壤流失公式(RUSLE)之簡介」,水保技術,5(4),251-257。 17. 林德貴、蔡怡臻、陳啟天(2011),「應用土壤沖蝕及崩塌潛勢模式推估集水區之泥砂生產量」,地工技術,第129期第97-108頁。 18. 林憶志(2009),「結合USLE以輔助山坡地土地可利用限度分類之探討」,碩士論文,國立中興大學水土保持研究所。 19. 邱昱嘉(2007),「放射性核種銫137在土壤重新分布率估算之研究」,博士論文,國立台灣大學土木工程學研究所。 20. 邱禎龍(2003),「台北縣三峽鎮白雞地區山崩引發土石流案例調查研究」,碩士論文,國立台灣大學地質科學研究所。 21. 徐郁涵(2007),「暴雨期間集水區土壤沖蝕模擬」,碩士論文,國立台灣海洋大學河海工程學研究所。 22. 張齡方、蘇明道(2001),「空間資料於洪災損失推估之應用」,農業工程學報,第47卷,第一期,第20-28頁。 23. 許振昆、林伯勳、鄭錦桐、高丞瑋、冀樹勇、黃文洲、尹孝元(2009),「3S技術於石門水庫集水區坡面沖蝕調查之應用」,水保技術,4(3),191-203。 24. 陳美心(1999),「土地利用變遷對水源涵養效益之影響--以大埔水庫集水區為例,碩士論文,逢甲大學土地管理學系。 25. 陳樹群(2006),「國土復育促進地區風險評估機制之研究」,行政院農業委員會水土保持局。 26. 陳樹群、吳俊毅、吳岳霖、王士豪(2009),「GIS圖層及修正因子建置台灣通用土壤流失公式(TUSLE)–以石門水庫集水區為例」,中華水土保持學報,40(2),185-197。 27. 陳樹群、簡如宏、馮智偉、巫仲明(1998),「本土化土壤沖蝕指標模式之建立」,中華水土保持學報,29(3),233-247。 28. 陳聯光、謝龍生、林聖琪、張志新、陳韻如、王俞婷、林又青,莫拉克颱風降雨事件對坡地災害預警之衝擊,2010年中央氣象局天氣分析與預報研討會暨美華海洋大氣學會第五屆國際海洋大氣研討會,2010。 29. 彭思顯(2004),「泥流及土石流湧浪進入河道所引致之地形變化」,博士論文,國立中興大學水土保持學系。 30. 彭思顯(2004),「泥流及土石流湧浪進入河道所引致之地形變化」,博士論文,國立中興大學水土保持學系。 31. 彭繼賢(2007),「應用FLO-2D於臺灣中部地區土石流流況分析之研究」,碩士論文,國立台灣大學土木工程研究所。 32. 楊凱鈞、黃宏斌、蘇立明(2003),「FLO-2D模式配合地理資訊系統在土石流災害模擬之應用」,第一屆數位地球國際研討會論文集,編號C1-6,台北。 33. 萬鑫森、黃俊義(1989),「台灣坡地土壤沖蝕」,中華水土保持學報,20(2),17-45。 34. 經濟部水利署(2005),「石門水庫集水區泥砂產量推估之研究(3/3)」成果報告,財團法人台灣水利環境科技研究發展教育基金會。 35. 經濟部水利署北區水資源局(2008),「石門水庫集水區土砂生產量推估與數位式集水區綜合管理研究計畫」成果報告,財團法人台灣水利環境科技研究發展教育基金會。 36. 經濟部水利署北區水資源局2008),「石門水庫高濁度缺水分析及改善策略檢討」成果報告,國立交通大學防災中心。 37. 趙倬群(2004),「石門水庫集水區崩塌土砂生產量推估之研究」,碩士論文,國立台灣大學土木工程學研究所。 38. 趙啟宏(2004),「土石流之數值模擬及流變參數特性之探討」,碩士論文,國立台灣大學土木工程研究所。 39. 劉格非、黃名村(2002),「土石流之現場數值模擬-應用於南投縣神木村」,中華水土保持學報,第三十三卷,第三期,第215-221頁。 40. 劉益誠(2008),「應用衛星影像於921災後九九峰植生復育崩塌潛感」,碩士論文,國立台灣大學土木工程學研究所。 41. 歐陽元淳(2003),「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,碩士論文,國立台灣大學地理環境資源學研究所。 42. 蔡長泰、游保杉等(1994、1995),「地理資訊系統在淹水預警上之應用」,國立成功大學水利暨海洋工程學系。 43. 鄭旭涵(1999),「九份二山地震崩塌坡面泥砂產量及植生恢復之研究」,碩士論文,國立中興大學水土保持學系。 44. 鄭思蘋(2003),「都會區颱洪災害損失之分析與評估」,博士論文,國立台灣大學生物環境系統工程學研究所。 45. 謝正倫、蔡元芳(1998),「土石流扇狀地之三維堆積地形」,中國土木水利工程學刊,第十卷,第四期,第719-730頁。 46. 謝正倫、蔡元芳(1998),「土石流扇狀地之三維堆積地形」,中國土木水利工程學刊,第十卷,第四期,第719-730頁。 47. 謝正倫、蔡元融、陳俞旭(2009),「集水區土砂生產及輸送模式之研究」,台灣水利季刊,57(4),14-26。 48. 蘇立明(2003),「二維數值模式應用於土石流災害模擬之研究」,碩士論文,國立台灣大學生物環境系統工程研究所。 二、英文部份 1. Aksoy, H., Kavvas, M.L. (2005), “A review of hillslope and watershed scale erosion and sediment transport models”, Catena, 64, 247-271. 2. B.C. Vandre (1985) Rudd Creek debris flow. In: D.S. Bowles (ed): Delineation of landslide, flash flood, and debris flow hazards in Utah. UtahWater Research Laboratory, Utah State University, Logan, Utah, 117-131. 3. BASINS Version3.0 User’s Manual. 4. Baum, R.L., Coe, J.A., Godt, J.W., Harp, E.L., Reid, M.E., Savage, W.Z., Schulz, W.H., Brien, D.L., Chleborad, A.F., McKenna, J.P., and Michael, J.A. (2005), Regional landslide-hazard assessment for Seattle, Washington, USA, Landslides, 2, 266–279. 5. Beasley, D.B., Huggins, L.F., Monke, E.J. (1980), ANSWERS-a model for watershed planning. Trans Am Soc Agric Eng 23, 938-944. 6. Breaden, J. P. (1973), “The Generation of Flood Damage Time Sequences”, University of Kentucky Water Resources Institute Paper, Vol.32. 7. Brown, J.P., Green, C.H., Thompson, P.M. (1973), “An economic model of flood plain land use policy”, Journal of Water Resources Research, Vol.8(1) pp.18-32. 8. CSIRO TOPOG Home page, http://www.clw.csiro.au/topog/intro/intro.html. 9. De Roo, A.P.J., Jetten, V.G. (1999), Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa. Catena 37 (3-4), 477-493. 10. Delmonaco, G., Leoni, G., Margottini, C., Puglisi, C. and Spizzichino, D. (2003). Large scale debris-flow hazard assessment: a geotechnical approach and GIS modeling. Natural Hazards and Earth System Sciences. 3: 443-455. 11. Dietrich, C., Green, T.R., Jakeman, A.J., (1999). An analytical model for stream sediment transport: application to Murray and Murrumbidgee reaches, Australia. Hydrological Processes 13 (5), 763–776. 12. Freeman, A.M. III (1993), The Measurement of Environmental and Resource Values, Washington,D.C.: Resources for the Future. 13. Grigg, N. S. and O. J. Heiweg, (1975), “State-of-The Art of Estimating Flood Damage in Urban Areas”, Water Resources Bulletin, Vol.11(2).pp.379-390. 14. Grigg, N. S., Leslie K. Botham, Leonard Rice, W. J. Shoemaker, and L. Scott Tucker, (1976), “Urban Drainage and Flood Control Projects Economic, Legal and Financial Aspects”, Hydrology Paper, Colorado State University, Fort Collins, Colorado, February. 15. Hahn, D.T., W.C. Moldenhauer, and C.B. Roth. (1985), “Slope gradient effect on erosion of reclaimed soil”, Trans. ASAE 28(3): 805-808. 16. Hanley, N., Faichney, R., Munro, A., Shortle, J.S., (1998). Economic and environmental modelling for pollution control in an estuary. Journal of Environmental Management 52, 211–225. 17. Heim, A. (1932). Bergsturz und Menschenleben. Zurich: Fretz & Wasmuth. 18. Huang, J.C., Kao, S.J., (2006), Optimal estimator for measuring landslide model efficiency, Hydrology and Earth System Sciences 10 957-965. 19. Ikeya, H. (1981). A method of designation for area in danger of debris flow. Erosion and Sediment Transport in Pacific Rim Steeplands (IAHS Publ. No. 132). International Association of Hydrological Sciences, Christchurch, New Zealand. 20. Jakeman, A., Post, D., Beck, M., 1994a. From data and theory to environmental model: the case of rainfall runoff. Environmetrics 5, 297–314. 21. Jakeman, A., Post, D., Schreider, S., Yu, Y.W., (1994)b. Modelling environmental systems: partitioning the water balance at different catchment scales. In: Zannetti, P. (Ed.), Computer Techniques in Environmental Studies V. Computational Mechanics Publications, Southampton, pp. 157–170. 22. Johanson, R.C., Imhoff, J.C., Davis, H.H., (1980). Users Manual for the Hydrologic Simulation Program—Fortran (HSPF) version No. 5.0, EPA-600/9-80-105. US EPA Environmental Research Laboratory, Athens, GA. 23. Johnson, A.M. (1984). Debris flow. In: D. Brusden and D.B. Prior (eds), Slope Instability (pp.257-361). John Wiley & Sons, New York. 24. Khazai, B., and Sitar, N. (2000), Assessment of Seismic Slope Stability 25. Knisel, W.G., 1980. CREAMS: A Field Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems. USDA. 26. Laflen, J.M., Lane, L.J., Foster, G.R., (1991). WEPP: A new generation of erosion prediction technology. Journal of Soil and Water Conservation 46, 34–38. 27. Large scale debris-flow hazard assessment: a geotechnical approach and GIS modeling. Natural Hazards and Earth System Sciences. 3: 443-455. 28. Lin, C.Y., Lin, W.T., Chou, W.C. (2002), “Soil erosion prediction and sediment yield estimation: the Taiwan experience”, Soil&Tillage Research, 68, 143-152. 29. Littleboy, M., Silburn, M.D., Freebairn, D.M., Woodruff, D.R., Hammer, G.L., Leslie, J.K., (1992). Impact of soil erosion on production in cropping systems. I. Development and validation of a simulation model. Australian Journal of Soil Research 30, 757–774. 30. McCool, D. K., Brown, L. C., Foster, G. R., Mulchler, C. K., Meyer, L. D. (1987), “Revised slope steepness factor for the universal soil loss equation,” Transaction of the ASAE, 30(5):1387-1475. 31. McIsaac, G.F., Mitchell, J.K., Hirschi, M.C. (1987), "Slope steepness effects on soil loss from disturbed lands", Trans. ASAE, 30(4),1005-1013. 32. Merritt, W.S., Letcher, R.A., Jakeman, A.J., (2003), "A review of erosion and sediment transport models", Environmental Modelling & Software, 18, 761-799. 33. Murphree, C.E., Mutchler, C.K. (1981), "Verification of the slope factor in the universal soil loss equation for low slopes", J. Soil and Water Conservation, 36(5),300-302. 34. Musgrave, G.W. (1947), "The quantitative evaluation of factors in water erosion, a first approximation", J. Soil and Water Conservation, 2, 133-138. 35. O’Brien, J.S. (2006), FLO-2D user’s manual, version 2006.01, Flo engineering, Nutrioso. 36. O’Brien, J.S., Julien, P.J. and Fullerton, W.T. (1993), “Two-dimensional water flood and mudflow simulation,” Journal of Hydraulic Engineering, ASCE, Vol.119, No.2, pp.244-261. 37. Pack, R.T., Tarboton, D.G., and Goodwin, C.N. (1998). The SINMAP Approach to Terrain Stability Mapping, Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada 21–25 September. 38. Prosser, I.P., Young, B., Rustomji, P., Hughes, A., Moran, C., (2001). A model of river sediment budgets as an element of river health assessment. In: Proceedings of the International Congress on Modelling and Simulation (MODSIM’2001), December 10–13, pp. 861–866. 39. Rickenmann, D. (1999). Empirical relationships for debris flows. Natural Hazards, 19: 47-77. 40. Rose, C.W., Coughlan, K.J., Ciesiolka, L.A.A., Fentie, B., (1997). Program GUEST (Griffith University Erosion System Template), a new soil conservation methodology and application to cropping systems in tropical steeplands. ACIAR Technical Reports 40, 34–58. 41. Rutledge, A.T. (1998). Computer Programs for Describing the Recession of Ground-water Discharge and for Estimating Mean Ground-water Recharge and Discharge from Streamflow Data, U.S. Geological Survey Water-Resources Investigations Report 98-4148, p. 43. 42. Saldivar-Sali, A. & Einstein, H.H., A Landslide Risk Rating System for Baguio, Philippines. Engineering Geology, 91(2-4), p.85-99, (2007). 43. Scheidegger, A.E., (1973), Physical aspects of natural catastrophes, Elsevier Scientific Publishing Company, Amsterdam – Oxford – New - York. 44. Shreve, R.L. (1968). Leakage and fluidization in air-layer lubricated avalanches. Geological Society of America Bulletin 79: 653-658. 45. Smith, D.D. and D.M. Whitt. (1947), “from as of claypan soils”, Soil Sci. Soc. Am. Proc. 12: 485-490. 46. Smith, D.D. and W.H. Wischmeier. (1957), “Factors affecting sheet and rill erosion”, Trans. Am. Geophys. Union 38:889-896. 47. Takahashi, T. (1991), Debris Flow, Balkema, Rotterdam, pp.134-153. 48. Takken, I., Beuselinck, L., Nachtergaele, J., Govers, G., Poesen, J., Degraer, G., (1999). Spatial evaluation of a physically-based distributed erosion model (LISEM). Catena 37 (3-4), 431–447.USEPA, (1994). SWRRBWQ Window’s interface users guide. US Environmental Protection Agency.Using GIS Modeling. Geographic Information Sciences, 6(2), pp.121-128. 49. Vertessey, R.A., Watson, F.G.R., Rahman, J.M., Cuddy, S.D., Seaton, S.P., Chiew, F.H., Scanlon, P.J., Marston, F.M., Lymbuner, L., Jeanelle, S., Verbunt, M., (2001). New software to aid water quality management in the catchments and waterways of the south-east Queensland region. In: Proceedings of the Third Australian Stream Management Conference, August 27–29, pp. 611–616. 50. Viney, N.R., Sivapalan, M., (1999). A conceptual model of sediment transport: application to the Avon River Basin in Western Australia. Hydrological Processes 13, 727–743. 51. Watson, F., Rahman, J., Seaton, S., (2001). Deploying environmental software using the Tarsier modelling framework. In: Proceedings of the Third Australian Stream Management Conference, August 27–29, pp. 631–638. 52. White, G. F., (1964), “Choice of Adjustment to Floods”, University of Chicago Press, 1963. 53. Wischmeier, W.H. and D.D. Smith. (1978), Predicting rainfall erosion losses – A guide to conservation planning, US Department of Agriculture, Agricultural Handbook No. 537. 54. Wischmeier, W.H., Smith, D.D., (1978). Predicting Soil Erosion Losses: A Guide to Conservation Planning, USDA Agricultural Handbook No. 537, 58 pp. 55. Young, R.A., Onstad, C.A., Bosch, D.D., Anderson, W.P., (1987). AGNPS, agricultural nonpoint source pollution. A watershed analysis tool. In: Conservation Research Report 35. US Department of Agriculture, Washington, DC. 56. Yu, B., Rose, C.W., Cielsiolka, C.A.A., Coughlan, K.J., Fentie, B., (1997). Towards a framework for runoff and soil loss prediction using GUEST technology. Australian Journal of Soil Research 35, 1191–1212. 57. Ziemer, R. R, (1991), An approach to evaluating the long-term effects of land use on landslides, erosion, and stream channels, Proceedings, Japan-U.S. Workshop on Snow Avalanche, Landslide, Debris Flow Prediction and Control, Tsukuba, Japan, pp533-542. 58. Zingg, A.W. (1940), Degree and length of land slope as it affects soil loss in runoff, Agr. Eng. 21: 59-64.
摘要: 
台灣位於歐亞大陸板塊與菲律賓海洋板塊交界處,地質活動頻繁,地層年代輕且破碎,地質構造複雜,加上地震以及豪大雨,容易引發山崩、地滑及土石流,也常引發山區大規模之山坡地土砂災害,而每年之颱風豪雨侵襲,更加劇土砂災害的發生,對生命財產及國家經濟損失構成莫大傷害。
本研究主要目的在瞭解台灣歷年重大土砂災害之發生機制、過程與產砂結果,並分別發展集水區土砂生產量分析技術及土石流災害模擬技術,以提升土砂防災能力。在土石流未發生情況下,本研究利用美國環保署(USEPA)與Hydrocomp Inc.所共同發展之WINHSPF模式,進行集水區內非點源之坡面土壤沖蝕量推估,以及利用美國地質調查所(USGS)發展之TRIGRS模式,進行點源之坡地崩塌土砂量估算,以便將集水區之土砂生產過程完整納入。其中,並考量降雨-逕流、土砂生產、土砂輸送及土砂流出等四種機制,建立一套集水區土砂生產量推估模式。另外,在土石流發生情況下,本研究採用FLO-2D土石流災害模擬技術,並配合學者所提之經驗公式,進行參數研究及模式驗證。最後,針對土石流潛勢溪流集水區土砂災害,建立一套合理且完整之評估模式。
本研究以花蓮縣秀林地區之土石流潛勢溪流集水區作為研究區域,並採用歷史颱風資料進行模式之參數率定與驗證。隨之,再利用100年重現期之24小時雨量,進行土石流未發生與發生情況下之土砂生產量計算。由分析結果可知,在土石流未發生情況下,其土砂生產量在考量坡面沖蝕(非點源)及坡面崩塌(點源)條件下之計算量體,較僅考量坡面沖蝕者約高出1.1至13.8倍。此顯示淺層崩塌對集水區土砂生產量,有顯著的貢獻。此亦說明集水區土砂生產量推估,應同時考慮坡面土壤沖蝕與坡地崩塌兩種土砂來源。此外,分析成果顯示:在土石流發生情況下,採用FLO-2D降雨-逕流模組及土砂平衡濃度計算土砂生產量,約為未發生土石流情況下,利用WINHSPF模式計算之土砂生產量之14.2倍。由於土石流發生時可能帶來的嚴重損失與災害,所以土石流是否發生之判釋,就顯得格外重要。
本研究除建立上述分析技術外,並提出集水區治理及土砂防災工作之應用,如災害影響範圍劃定、土砂災損風險評估、工程整治成效評估及集水區土砂生產量推估等,並以花蓮縣秀林地區為研究區域,對於近年土砂災害頻傳之問題,可減少或避免土砂災害帶來之衝擊有實質助益。同時,本研究成果可提供未來建構土石流潛勢溪流集水區安全防護網之重要參考。

Taiwan is located at the junction of the Eurasian and Philippine Sea plates. The geologic characteristics of this area are frequent geological activity, young geological age, fragile rocks, and complicated geological structures. Seismic activity and torrential rain may easily trigger landslides, slope failure, debris flow, and large scale sediment-related hazards. Particulary during summer season from July to October, intense typhoon events in Taiwan may increase the occurrence of sediment-related hazards. Consequently, the sediment-related hazards result in the loss of human life, property and inflict damage to the economy.
In this study, the estimation methods of sediment yields and simulation techniques of debris flow in debris-flow potential watersheds were developed to investigate the occurrence mechanisms, transportation process, and sediment yields to enhance the preventive capabilities and skills against the sediment-ralated hazard. For debris-flow non-occurrence condition, the WINHSPF and TRIGRS models were used for predicting the sediment yield resulted from soil erosion and shallow landslide in which four processes, namely, rainfall-runoff, sediment yields, sediment transport, and sediment runoff were taken into accouted. In addition, for debris-flow occurrence condition, the FLO-2D model incorporated with empirical equations were adopted for calculating sediment yields due to debris flow.
In the present study, an attempt was made to develop an integrated method considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate the sediment yields from a debris-flow potential watershed on a storm event basis. The proposed method was implemented to debris-flow potential watersheds located in the Siou-Lin Township of Hualien County in which numerous data encompassed the hourly rainfall, historical streamflow and sediment monitoring and event-based landslide inventory maps were used for a systematic calibration and validation of numerical models.
The validity of numerical models in the integrated method was verified by comparing the sediment yield from numerical simulations with those from field observations of several typhoon events. In the model verifications, a 24 hrs design hyetograph of 100 years return period was employed for the numerical simulation of sediment yield within the study area. For debris-flow non-occurrence scenarios, the numerical results show that the sediment yields from soil erosions and landslides were found to be about 1.1 to 13.8 times of those merely from soil erosion and these demonstrate that the significance of shallow landslide as a source of sediment supply in sediment yields estimation. Moreover, a comparison of sediment yields computed from debris-flow occurrence and non-occurrence scenarios illustrates that the sediment yield from debris-flow occurrence condition was found to be about 14.2 times of that from debris-flow non-occurrence condition and this implies that the sediment-related hazard in debris-flow potential watershed induced by debris flow may cause severe consequences and damages.
In this study, in addition to the development of numerical analysis techniques above, several practical applications of the analysis techniques in debris flow disaster such as the delineation of hazard zone, damage assessment, effectiveness assessment of engineering remediation, and estimation of sediment yields in debris-flow potential watersheds were also implemented.
Conclusively, the proposed analysis techniques can provide the relevant public agencies or private sectors with the necessary information to draft the prevention/secure emergency plans of debris flow and disaster management policies such as the allocation of rescue resource and the evacuation path during debris flows. Finally, a protective network against sediment-related disaster can be erected to secure the safety of community in the future.
URI: http://hdl.handle.net/11455/33146
其他識別: U0005-2805201315071900
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.