Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3316
DC FieldValueLanguage
dc.contributor.advisor鄭文桐zh_TW
dc.contributor.author徐金旺zh_TW
dc.date2001zh_TW
dc.date.accessioned2014-06-06T05:31:43Z-
dc.date.available2014-06-06T05:31:43Z-
dc.identifier.urihttp://hdl.handle.net/11455/3316-
dc.description.abstractDue to the development of science technology, many industries such as ceramics, metals, powders, and pigments must fineness to apply for the novel opto-electronic devices in the future. A dispersed particle that is less than 100nm on size is called superfine particle or nano-material. With large surface area and high activity energy, the ultra-microscopy in particle is filled by dispersion into the matrix structure for a thinner and super performance of opto-electronic and information like color filter, flat plate display, high density and thermal reversible digital versatile disc, ultra-thinning insulation of electrical magnetic interruption, and so on. This research develops a method to disperse nano-organic pigments using the supercritical fluid. Taking a supercritical fluid with low surface tension and high diffusion coefficient as solvent, the nano-scale powder may be wetted and swelled effectively to form the primary particles in the dispersing solution. For the phthalocyanine green pigment, the particle size of 93.5nm in the dispersing solution without the dispersant have been obtained by using supercritical carbon dioxide in this study. Additionally, through Taguchi method, in this dissertation the particle dimensions of aminoanthraquinone red, phthalocynaine green, and phthalocynaine blue organic components in the dispersing solution with the dispersant are respectively shown as follows: (1) 178.5nm at a stability of 4 hours, (2) 121.9nm at a stability of 6 hours, and (3) 187.4nm at a stability of 3 hours under the optimum conditions of dispersion on the operations of supercritical carbon dioxide.en_US
dc.description.abstract隨著科學技術的進步,工業材料傾向精細、高性能、高可靠度,尤其電子材料的要求特別嚴格。因此,粉末成形、燒結製成的陶瓷與金屬、粉末粒子分散系-顏料或塗料等工業,需將原料粉末粒子更須細微化以滿足未來新穎電子資訊產品之需求。將粒子分散至100nm以下稱為超微粒子,也稱為奈米材料。由於粒徑極小而具有廣大之表面積與極高之表面活化能,故若能將奈米級粒子均勻分散於基材中,則可製作出薄層化且高性能之資訊電子材料,如高精細的平面顯示器用彩色濾光片、超薄電磁波遮敝層、高密度熱可逆性光學記錄元件等。 本研究利用同時具有低表面張力和高擴散係數之超臨界流體做為溶劑,促使凝聚之奈米級粒子充分分散,期變成一次粒徑的分散液。經由田口實驗,目前完成超臨界CO2對紅、綠、藍三色有機顏料分散之最適化,其結果如下: (a)紅色有機顏料分散之最小平均粒徑為178.5nm,其安定性可達4小時之久; (b)綠色花菁有機顏料分散之最小平均粒徑為121.9nm,其安定性可達6小時之久;及 (c)藍色花菁有機顏料分散之最小平均粒徑為187.4nm,其安定性可達3小時之久。 此外,綠色花菁有機顏料無加入分散劑,使用超臨界流體分散可達到93.5nm的超微粒子。zh_TW
dc.description.tableofcontents中文摘要------------------------------------------------------------------- 英文摘要------------------------------------------------------------------- 目錄------------------------------------------------------------------------- 表目錄---------------------------------------------------------------------- 圖目錄---------------------------------------------------------------------- 第一章 緒論--------------------------------------------------------------- 1-1 前言------------------------------------------------------------------------- 1-2 研究動機與目的---------------------------------------------------------- 1-3 研究方法------------------------------------------------------------------- 1-4 本論文架構---------------------------------------------------------------- 第二章 理論與基礎------------------------------------------------------ 2-1 有機顏料的特性---------------------------------------------------------- 2-2 超臨界流體---------------------------------------------------------------- 2-3 傳統分散方法------------------------------------------------------------- 2-4 分散穩定性與效果評估方法------------------------------------------- 2-5 田口品質工程------------------------------------------------------------- 第三章 超微粒有機顏料分散之研究--------------------------------- 3-0 本章摘要------------------------------------------------------------------- 3-1 實驗材料------------------------------------------------------------------- 3-2 實驗儀器與設備---------------------------------------------------------- 3-3 實驗裝置------------------------------------------------------------------- 3-4 實驗方法------------------------------------------------------------------- 3-5 結果與討論---------------------------------------------------------------- 3-6 本章結論------------------------------------------------------------------- 第四章 綜合結論與未來延續工作------------------------------------ 第五章 參考文獻--------------------------------------------------------- 附錄一 光散射粒徑分析之圖表--------------------------------------------------zh_TW
dc.language.isozh_TWzh_TW
dc.publisher化學工程學系zh_TW
dc.subjectSupercritical Fluiden_US
dc.subject超臨界流體zh_TW
dc.subjectOrganic pigmenten_US
dc.subjectNano-materialen_US
dc.subjectDispersionen_US
dc.subject有機顏料zh_TW
dc.subject奈米材料zh_TW
dc.subject分散zh_TW
dc.title超微粒子有機顏料分散研究zh_TW
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.