Please use this identifier to cite or link to this item:
標題: 應用土壤粒徑分布模式推估土壤水分特性曲線之研究
Application of Particle-size Distribution Models to Estimate Soil Water Characteristic Curve Models
作者: 陳威竹
Chen, Wei-Chu
關鍵字: 粒徑分布;Particle-size distribution;土壤水分特性;推估模式;Soil water characteristic;Estimation model
出版社: 水土保持學系所
引用: 中文部分 1. 林俐玲、董小萍,1996,土壤物理學實習手冊,國立中興大學水土保持學系。 2. 林佳燕,2008,不同土壤質地Arya and Paris模式參數之推估,國立中興大學水土保持學系研究所論文。 3. 林可薇,2012,以連續土壤轉換函數預測van Genuchten模式參數之研究,國立中興大學水土保持學系研究所碩士論文。 4. 張舒婷,2007,土壤水分特性曲線與不飽和水力傳導度之研究,國立中興大學水土保持學系研究所碩士論文。 5. 萬鑫森譯,1987,基礎土壤物理學,國立編譯館主編,茂昌圖書有限公司。 6. 楊全成,1992,土壤力學試驗補充教材。 7. 蔡義誌,2008,不飽和土壤水力傳導度與介質孔隙分佈關係之研究,國立中興大學水土保持學系研究所博士論文。 西文部分 1. Arya, L.M., and J.F. Paris, (1981). A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Society of America Journal, 45: 1023–1030. 2. Arya, L. M., J. C. Richter, and S. A. Davidson. (1982). A comparison of soil moisture characteristic predicted by the Arya-Paris model with laboratory-measured data. AgRISTARS Tech. Rep. SM-L1-04247, JSC-17820. NASA-Johnson Space Center, Houston, TX. 3. Arya, L.M., F.J. Leij, M.Th. van Genuchten, and P.J Shouse. (1999). Scaling parameter to predict the soil-water characteristic from particle-size distribution data. Soil Science Society of America Journal, 63: 510–519. 4. Arya, L. M., F. J. Leij, M. Th. van Genuchten, and P. J. Shouse. (1999a). Scaling parameter to predict the soil water characteristic from particle-size distribution data. Soil Sci. Soc. Am. J. 63: 510-519. 5. Aubertin, M., M. Mbonimpa, B. Bussiere, and R.P. Chapuis. (2003). Development of a model to predict the water retention curve using basic geotechnical properties. EPM-RT-2003-01. 6. Basile, A., and G. D’Urso. (1997). Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination. Soil Technology. 10: 261-272. 7. Bittelli, M., G.S. Campbell, and M. Flury. (1999). Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci. Soc. Am. J. 63: 782–788 8. Brooks, R.H. and A.T. Corey. (1964). Hydraulic properties of porous medium. Colorado State University(Fort Collins), Hydrology Paper, Nr. 3, March. 9. Brutsaert, W. (1966). Probability laws for pore-size distribution. Soil sci. 101: 85-92. 10. Buchan, G.D. (1989). Applicability of the simple lognormal model to particle-size distribution in soils. Soil Sci. 147: 155–161. 11. Buchan, G.D., K.S. Grewal, and A.B. Robson. (1993). Improved models of particle-size distribution: An illustration of model comparison techniques. Soil Sci. Soc. Am. J. 57: 901–908. 12. Buzcko, U., and H. H. Gerke. (2005). Evaluation of the Arya and Paris Model for Estimating Water Retention Characteristics of Lignitic Mine Soils. Soil Sci. 142: 483-494. 13. Clapp, R. B., and G. M. Hornberger. (1978). Empirical equations for some soil hydraulic properties.Water Resour. Res. 14: 601-604. 14. Cornelis, W. M., J. Ronsyn, M. van Merivenne, and R. Hartmann.(2001).Evaluation of pedotransfer function for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 65: 638-648. 15. Comegna, V., P. Damiani, and A. Sommella. (1998). Use of a fractal model for determining soil water retention curves. Geoderma. 85: 307-323. 16. Fredlund, D.G., and A. Xing. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(3): 521-532. 17. Fredlund, M.D., D.G. Fredlund, and G.W. Wilson. (1997). Prediction of the soil-water characteristic curve from grain-size distribution and volume–mass properties. In Proceedings of the 3rd Brazilian Symposium on Unsaturated Soils, Rio de Janeiro, 22–25 April 1997, Vol. 1, pp. 13–23. 18. Fredlund, M.D., D.G. Fredlund, and G.W. Wilson. (2000). An equation to represent grain-size distribution. Can. Geotech. J. 37: 817–827. 19. Fredlund M. D., G. W. Wilson, and D.G. Fredlund. (2002). Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can Geotech. J. 39: 1103-1117. 20. Gee, G.W., and D. Or. (2002). Particle-size analysis. P.255-293. In J.H. Dane and G. C. Topp (ed.) Methods of soil analysis. Part 4. SSSA Book Series No. 5. SSSA, Madison, WI. 21. Gupta, S.C., and W.E. Larson. (1979). Estimating soil-water retention characteristics from particle-size distribution, organic matter percent, and bulk density. Water Resources Research, 15(6): 1633–1635. 22. Hillel, D. (1980). Fundamentals of Soil Physics, Academic Press, New York. 23. Hwang, S.I., K.P. Lee, D.S. Lee, and S.E. Powers. (2002). Models for estimating soil particle-size distributions. Soil Sci. Soc. Am. J. 66:1143–1150. 24. Jaky, J. (1944). Soil mechanics. (In Hungarian.) Egyetemi Nyomda, Budapest. 25. Jones, S. B., and D. Or. (1998). Design of porous media for optimal gas and liquid fluxes to plant roots. Soil Sci. Soc. Am. J. 62: 563-573. 26. King, L. G. (1965). Description of soil characteristics for partially saturated flow. Soil Sci. Soc. Amer. Proc. 29: 359-362. 27. Klute, A., and C. Dirksen. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. p. 687-734. In A. Klute (ed.) Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd ed. Agronomy Monograph no. 9. ASA and SSSA, Madison, WI, USA. 28. Kosugi, K. (1996). Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res. 32:2697-2703. 29. Laliberte, G. E. (1969). A mathematical function for describing capillary pressure-desaturation data. Bull. Int. Ass. Sci. Hydrol. 14: 131-149. 30. Lascano, R. J., and L. Stroosnijder. (1993). A simple method for predicting the spatial distribution of soil hydraulic properties. Soil Sci. Soc. Am. J. 57: 1479-1484. 31. Nemes, A., J.H.M. Wo‥ sten, A. Lilly, and J.H.O. Voshaar. (1999). Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma 90: 187–202. 32. Rawls, W.J., and D.L. Brakensiek, (1985). Prediction of soil water properties for hydrologic modeling. In Watershed Management in the Eighties, Proceedings of a Symposium Sponsored by the Committee on Watershed Management, I & D Division, American Society of Civil Engineers, Denver, Colo., 30 April – 1 May 1985. Edited by E.B. Jones and T.J. Ward. American Society of Civil Engineers, New York, pp. 293–299. 33. Rawls, W.J., and D.L Brakensiek. (1989). Estimation of soil-water retention and hydraulic properties. In Unsaturated flow in hydrologic modeling theory and practice. Edited by H.J. Morel-Seytoux. Kluwer Academic Publishers, Beltsville, Md., pp. 275–300. 34. Rousseva, S.S. (1997). Data transformations between soil texture schemes. Eur. J. Soil Sci. 48:749–758 35. Scheinost, A.C., W. Sinowski, and K Auerswald. (1997). Regionalization of soil-water retention curves in a highly variable soilscape, I. Developing a new pedo-transfer function. Geoderma, 78: 129–143. 36. Shiozawa, S., and G.S. Campbell. (1991). On the calculation of mean particle diameter and standard deviation from sand, silt, and clay fractions. Soil Sci. 152:427–431. 37. Skaggs T H, L M Arya, P J Shouse.(2001).Estimating particle.size distribution from limited soil texture data[J].Soil Science Society of America Journa1 73: 1.38-1044. 38. Su, C. , and R. H. Brooks . (1975). Soil Hydraulic properties from infiltration tests.Watershed Management Proceedings, Irrigation and Drainage Div., ASCE, Logan, Utah, August11-13, pp. 516-542. 39. Tyler, S.W., and S.W. Wheatcraft, (1989). Application of fractal mathematics to soil water retention estimations. Soil Science Society of America Journal, 53(4): 987–996. 40. van Genuchten, M. Th., (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. of Am. J., 44 : 892 -898. 41. Vereecken, H., J Maes, J. Feyen, and P. Darius. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science, 148(6): 389–403. 42. Visser, W. C. (1968). An empirical expression for the desorption curve. In P. E. Rijtemaand H. Wassink (eds.). Water in the unsaturated zone, Proc. Wageningen Symposium,IASH/AIHS, Unesco, Paris, Vol I, 329-335. 43. Vukovic, M., and A. Soro. (1992). Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, Colo.
土壤水分特性與土壤孔隙分佈相關,而土壤孔隙分佈亦與土壤粒徑分布有極大關係,故本研究以土壤粒徑分布與土壤水分特性為研究之重心,引用Fredlund粒徑分布模式(簡稱為FL-model)(Fredlund, 2000)以及Fredlund and Xing水分特性模式(簡稱為FX-model)(Fredlund and Xing, 1994)來擬合室內實驗數據並進行推估。室內實驗中,量測土壤水分特性曲線之實驗過程繁瑣且費時,而為了能夠節省實驗的時間與人力,本研究欲利用土壤粒徑分布推估土壤水分特性曲線,來達到用兩天的實驗取代超過一個月的實驗。
在推估的效果上,雖成功率沒有很高,但Case 1及Case 3的成果勝過Case 2,且Case 3略優於Case 1。

The soil water characteristic curve is related to soil porosity distribution. However, soil porosity distribution is greatly related to soil particle-size distribution. As such, this study will focus on soil particle-size distribution and the soil water characteristic curve. By applying the Fredlund particle-size distribution model (Fredlund, 2000) and the Fredlund and Xing water content characteristic model (the FX-model) (Fredlund and Xing, 1994), the indoor experiment data will be fitted for further estimation. During the indoor experiment, the experiment process of the soil water characteristic curve is complicated and time-consuming. To save time and labor, this study intended to estimate the soil water characteristic curve by using soil particle-size distribution.
For model fitting results, both the Fredlund model (Fredlund, 2000) and FX-model have a very good fit. To estimate the soil water characteristic curve, this study uses particle-size distribution to determine the parameters of αf, nf, mf and ψγ of the FX-model and then indirectly to estimate the soil water characteristic curve. This study provides three methods for determining αf and ψγ: Case 1 – to determine the corresponding matric potential of the inflection point on the soil water characteristic curve, which is equal to αf, and ψγ is the suggested value 3000(kPa) by Fredlund (1994); Case 2 – to calculate the air-entry value and the ψγ value by using the equivalent particle diameter (DH). The air-entry value is equal to the αf value; Case 3 – to determine the corresponding effective grain diameter (dea) of the air-entry value and the corresponding effective grain diameter (der) of ψγ and then to determine αf and ψγ. Then, nf and mf are estimated by using an estimation formula based on the effective grain diameter, proposed by Fredlind (2002). For estimation results, though the success rate is not high, however the results of Case 1 and Case 3 are better than Case 2, while Case 3 is slightly better than Case 1.
其他識別: U0005-0708201318073700
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7100042007-1.pdf2 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.