Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/33263
標題: 降雨誘發崩塌與土石流災害風險降低措施之效益分析
The efficiency of risk reduction programs for rainfall-induced landslide and debris-flow disasters
作者: 吳俊毅
Wu, Chun-Yi
關鍵字: 崩塌;landslide;土石流;風險評估;益本分析;debris-flow;risk assessment;benefit-cost analysis
出版社: 水土保持學系所
引用: 1. 中央地質調查所(2009),「都會區周緣坡地山崩潛勢評估」,財團法人中興工程顧問社。 2. 王俞婷(2005),「建立坡地社區耐災程度評估模式-以台中縣與南投縣為例」,國立中興大學水土保持學系碩士論文。 3. 吳亭燁(2006),「土石流防災社區承受度評估之研究」,國立中興大學水土保持學系碩士論文。 4. 吳俊鋐(2005),「降雨引發邊坡崩塌潛勢評估模式之建構」,國立中興大學水土保持學系博士論文。 5. 林俊全(2006),「石門水庫集水區的崩塌問題之研究」,工程環境會刊,17, 39-51。 6. 林彥享(2003),「運用類神經網路進行地震誘發山崩之潛感分析」,國立中央大學應用地質研究所碩士論文。 7. 翁愷翎(2009),「玉峰溪集水區崩塌型態與分布特性之探討」,國立中興大學水土保持學系碩士論文。 8. 張石角(1987),「山坡地潛在危險之預測及其在環境影響評估之應用」,中華水土保持學報,18(2), 41-62。 9. 陳信雄(1995),崩塌地調查與分析,渤海堂文化公司,p.p.342-395。 10. 陳樹群、吳俊鋐、柯勇全、馮智偉、吳俊毅(2005),「社區防災風險辨識與管理策略新思維」,2005水土保持與農村發展成果研討會論文集,台北,行政院農業委員會水土保持局,pp.265-282。 11. 陳樹群、馮智偉(2005),「應用Logistic迴歸繪製崩塌潛感圖-以濁水溪流域為例」,中華水土保持學報,36(2), 191-201。 12. 黃柏璁(2007),「天然災害風險地圖製作之研究」,國立中興大學水土保持學系碩士論文。 13. 農委會水土保持局(2008),「99年土石流災害防救業務計畫及作業手冊檢討與更新」。 14. 劉格非、李欣輯(2006),「土石流直接災損評估之研究」,中華水土保持學報,37(2), 143-155。 15. 內政部營建署(2012),「96年度18縣市非都市土地開發影響費cu值一覽表」,http://www.cpami.gov.tw (4/20, 2012)。 16. 全國戶政網站(2012),「各村里人口統計表」,http://www.leadware.com/search/hrwebs.html (4/25, 2012)。 17. 宜蘭縣政府地方稅務局(2012),「宜蘭縣房屋標準單價表」,http://www.iltb.gov.tw (4/10, 2012)。 18. 桃園縣政府地方稅務局(2012),「桃園縣房屋標準單價表」,http://www.tytax.gov.tw (4/10, 2012)。 19. 新竹縣政府稅捐稽徵局(2012),「新竹縣房屋標準單價表」,http://www.chutax.gov.tw (4/10, 2012)。 20. 農委會林務局(2012),「保林業務暨森林災害統計系統」,http://forestdisaster.forest.gov.tw (4/20, 2012)。 21. 農委會農糧署(2012),「農情報告資源網」,http://agr.afa.gov.tw (4/15, 2012)。 22. 農委會農糧署(2012),「農產品物價查報系統」,http://apis.afa.gov.tw (4/15, 2012)。 23. Agresti, A. (1990). Categorical Data Analysis, New York: John Wiley. 24. Baeza, C. and Corominas, J. (2001). “Assessment of shallow landslide susceptibility by means of multivariate statistical techniques.” Earth Surface Processes and Landforms, 26, 1251-1263. 25. Bak, P., Tang, C., and Wiesenfeld, K. (1988). “Self-organized criticality.” Physical Review, A38, 364–374. 26. Bell, R. and Glade, T. (2004). “Quantitative risk analysis for landslides – Examples From B´ıldudalur, NW-Iceland.” Natural Hazards and Earth System Sciences, 4:117–131. 27. Brundl, M., Romang, H. E., Bischof, N., and Rheinberger, C. M. (2009). “The risk concept and its application in natural hazard risk management in Switzerland.” Natural Hazards and Earth System Sciences, 9, 801-813. 28. Brunetti, M. T., Guzzetti, F. and Rossi, M. (2009). “Probability distributions of landslide volumes.” Nonlinear Processes in Geophysics, 16: 179-188. 29. Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., Castellani, M. and Salvati, P. (2002). “A geomorphological approach to the estimation of landslide hazards and risks in Umbria.” Natural Hazards and Earth System Sciences, 2, 57–72. 30. Carrara, A. (1983). “A multivariate model for landslide hazard evaluation.” Mathematical Geology, 15, 403–426. 31. Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P. (1991). “GIS Techniques and statistical models in evaluating landslide hazard.” Earth Surface Processes and Landform, 16, 427–445. 32. Carrara, A., Crosta, G., and Frattini, P. (2008). “Comparing models of debris-flow susceptibility in the alpine environment.” Geomorphology, 94, 353-378. 33. Chen, S. C., Wu, C. Y., and Huang, B. T. (2010). “The efficiency of a risk reduction program for debris-flow disasters – a case study of the Songhe community in Taiwan.” Natural Hazards and Earth System Sciences, 10, 1591-1603. 34. Chen, S.C., Wu, C. Y., and Wu, T. Y. (2009). “Resilient capacity assessment for geological failure areas - examples from communities affected by debris flow disaster.” Environmental Geology, 56, 1523–1532. 35. Chung, C. F., and Fabbri, A. G. (1993). “The representation of geoscience information for data integration.” Natural Resources Research, 2, 122–139. 36. Chung, C. F., and Fabbri, A. G. (1999). “Probabilistic prediction models for landslide hazard mapping.” Photogrammetric Engineering & Remote Seneing, 65(12), 1389-1399. 37. Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides, United States Geological Survey Open File Report 00-249. 38. Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., and Paudyal, P. (2008). “Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence.” Geomorphology, 102, 496–510. 39. Edwards, W. (1977). “How to use multiattribute utility measurement for social decision making.” IEEE Transactions on Systems Man and Cybernetics, 7, 326-340. 40. Erismann, T. H. and Abele, G. (2001). Dynamics of Rockslides and Rockfalls, Springer. 41. Ferrier, N. and Haque, C. E. (2003). “Hazards risk assessment methodology for emergency managers: A standardized DFamework for application.” Natural Hazards, 28:271–290. 42. Forte, F., Pennetta, L., and Strobl, R. O. (2005). “Historic records and GIS applications for flood risk analysis in the Salento peninsula (southern Italy).” Natural Hazards and Earth System Sciences, 5, 833–844. 43. Fuchs, S. and Mcalpin, M. C. (2005). “The net benefit of public expenditures on avalanche defence structures in the municipality of Davos, Switzerland.” Natural Hazards and Earth System Sciences, 5, 319-330. 44. Fuchs, S., Thöni, M., McAlpin, M. C., Gruber, U., and Bründl, M. (2007). “Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses—evidence from Davos, Switzerland.” Natural Hazards, 41, 113–129. 45. Fujii Y. (1969). “Frequency distribution of landslides caused by heavy rainfall.” Journal Seismological Society Japan, 22, 244–247. 46. Galli, M. and Guzzetti, F. (2007). “Landslide Vulnerability Criteria: A Case Study from Umbria, Central Italy.” Environmental Management, 40, 649–664. 47. Gregory, C. O. and John, C. D. (2003). “Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA.” Engineering Geology, 69, 331-343. 48. Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P. (1999). “Landslide hazard evaluation: an aid to a sustainable development.” Geomorphology, 31, 181–216. 49. Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., and Cardinali, M. (2006). “Landslide hazard assessment in the Collazzone area, Umbria, Central Italy.” Natural Hazards and Earth System Sciences, 6, 115-131. 50. Guzzetti, F., Malamud, B. D., Turcotte, D. L., and Reichenbach, P. (2002). “Power-law correlations of landslide areas in central Italy.” Earth and Planetary Science Letters, 195, 169–183. 51. Guzzetti, F., Reichenbach, P., and Ghigi, S. (2004). “Rockfall hazard and risk assessment in the Nera River Valley, Umbria Region, central Italy.” Environmental Management, 34(2), 191–208. 52. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F. (2005). “Probabilistic landslide hazard assessment at the basin scale.” Geomorphology, 72, 272– 299. 53. Hampton, M. A., Lee, H. L., and Locat, J. (1996). “Submarine landslides.” Reviews of Geophysics, 34, 33–59. 54. Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C. (2000). “Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan.” Journal of Geology, 108, 73–89. 55. ISDR (2002), Living with Risk: A Global Review of Disaster Reduction Initiatives, United Nations ISDR, Geneva. 56. Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., and Dong, J. J. (2008). “Statistical approach to storm event-induced landslides susceptibility.” Natural Hazards and Earth System Sciences, 8, 941–960. 57. Malamud, B.D., Turcotte, D.L., Guzzetti, F., and Reichenbach, P. (2004). “Landslide inventories and their statistical properties.” Earth Surface Processes and Landforms, 29(6), 687–711. 58. NC, Division of Emergency Management (1998). Local hazard mitigation planning, NC. 59. Onoz, B. and Bayazit, M. (2001). “Effect of the occurrence process of the peaks over threshold on the flood estimates.” Journal of Hydrology, 244, 86–96. 60. Papathoma-Kohle, M., Neuhauser, B., Ratzinger, K., Wenzel, H., and Dominey-Howes, D. (2007). “Elements at risk as a framework for assessing the vulnerability of communities to landslides.” Natural Hazards and Earth System Sciences, 7, 765–779. 61. Remondo, J., Bonachea, J. and Cendrero, A. (2008). “Quantitative landslide risk assessment and mapping on the basis of recent occurrences.” Geomorphology, 94, 496-507. 62. Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., and Peruccacci, S. (2010). “Optimal landslide susceptibility zonation based on multiple forecasts.” Geomorphology, 114, 129–142. 63. Staats, E. B. (1969). “Survey of use by federal agencies of the discounting technique in evaluating future programs.” in Hinricks, H. and Taylor, G. (eds). Program budgeting and benefit–cost analysis, Pacific Palisades, CA: Goodyear. 64. Stark, C. P., and Hovius, N. (2001). “The characterization of landslide size distributions.” Geophysics Research Letters, 28(6), 1091–1094. 65. Turcotte, D. L., and Malamud, B. D. (2004). “Landslides, forest fires and earthquakes: Examples of self-organized critical behavior.” Physica A-Statistical Mechanics and Its Applications, 340(4), 580–589. 66. Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., and Poesen, J. (2009). “Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium.” Natural Hazards and Earth System Sciences, 9, 507-521. 67. Van Westen, C. J., Castellanos, E., and Kuriakose, S. L. (2008). “Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview.” Engineering Geology, 102, 112–131. 68. Varnes, D. J., and IAEG Commission on Landslides and other Mass-Movements (1984). Landslide Hazard Zonation: a Review of Principles and Practice, NESCO Press, Paris. 69. Varnes, D. J. (1978). “Slope movements and type and processes in: Landslide Analysis and Control.” Transportation and Road Research Board, Washington Special Report, 176, 11-13. 70. Weissel, K. W., Stark, C.P., and Hovius, N. (2001). “Landslides triggered by the 1999 Mw7.6 Chi-Chi earthquake in Taiwan and their relationship to topography.” Geoscience and Remote Sensing Symposium, IEEE 2001 International, 759-761. 71. Wilson, J. P. and Gallant, J. C. (2000). Terrain Analysis – Principles and Applications, John Wiley & Sons, New York. 72. Xie, M., Esaki, T., and Zhou, G. (2004). “GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model.” Natural Hazards, 33, 265–282. 73. Zezere, J. L., Oliveira, S. C., Garcia, R. A. C., and Reis, E. (2007). “Landslide risk analysis in the area North of Lisbon (Portugal): evaluation of direct and indirect costs resulting from a motorway disruption by slope movements.” Landslides, 4, 123–136.
摘要: 
本研究旨在建置崩塌風險分析流程,藉以分析集水區區域之崩塌災害風險分布,依序分析崩塌危害、風險元素之易脆弱性及村里之承受能力,來計算崩塌災害事件中可能造成的財產風險、生命風險與總風險值。首先,結合崩塌空間機率、時間機率及崩塌規模機率,來進行崩塌危害分析。崩塌潛勢相關因子經篩選後包含11個內在地形因子及2個外在降雨因子,以建立崩塌潛勢模型;崩塌規模分析則先建立崩塌面積與非累積個數之冪次關係,再以機率密度函數將其轉為崩塌面積累積機率;最後以不同重現期距降雨之超越機率來做為該事件之時間機率,用以估算集水區發生崩塌面積大於一定規模之年計機率。第二,易脆弱性分析包含以地上物為主的財產易脆弱性與以人命為主的生命易脆弱性。土地利用可被分為建築物、住宅、農地、林地、道路、水域及無直接損失等9種風險元素型式,並針對不同風險元素給予其單位面積的價值。再以損害因數代表不同風險元素實際災損值與其本身價值的平均比例,由此分析財產易脆弱性。生命易脆弱性則以生命價值和居民在屋內的死亡率來進行量化分析。第三,由村里防災整備架構可知,村里承受能力係由「舉辦防災演練」、「土石流觀測站」、「民眾自主觀測」與「土石流防災專員」四部分所組成。因此,可由村里檢核表所得到的分數與各項目之權重來計算村里承受能力。最後,依據年計崩壞比、財產易脆弱性計算結果繪製財產風險地圖;而將年計崩壞比、生命易脆弱性與承受能力結合以評估生命風險,並與財產風險相加成總風險地圖。本研究亦針對石門水庫集水區防災管理措施實施前後之風險進行分析,以得到防災措施的效益值;再將效益值與防災措施之成本進行益本分析。防災措施益本比較高之村里有華陵村、義盛村、秀巒村及高義村,均為年計生命風險較高之村里。義盛村益本比雖已達192.19,但承受能力僅0.5716,說明其仍可透過加強防災管理措施來降低生命風險。整體集水區防災措施之益本比遠大於1,代表目前所實施防災措施之效益大於投資成本,為合乎經濟效用的方案。由因子之敏感度分析結果並可知,易脆弱性及死亡率之改變會加大風險值之不確定性,而年利率變大或生命週期變小使得防災措施之益本比變小,但對效益分析而言,並不影響其具有經濟效益之結果。

The purpose of this research is to establish the landslide risk analysis procedures by which the disaster risk distribution within the watershed was analyzed. Orderly, this research analyzed the landslide hazard, the vulnerability of elements at risk, and the resilience capacity of village to calculate the values of property risk, life risk and total risk possibly caused landslide disasters. First, the landslide hazard assessment included the landslide spatial probability, temporal probability and probability of landslide area. Eleven geomorphological factors and two rainfall factors, evaluated as effective factors because of the higher correlation with the landslide distribution, were regarded in the landslide susceptibility model. The probabilities of landslide area were developed by transforming the power law formula in the landslide frequency-area distribution. Then, the landslide spatial probability and exceedance probability of different rainfall events as well as the probability of landslide area were used to predict annual probability of each slope-unit with a landslide area more than a threshold. Second, vulnerability analysis included the vulnerability of property above land and the vulnerability of human life. The land-use layer was divided into building, house, farmland, forestland, road, water area and no-direct-loss, nine types of element at risk, and the value of its unit area was given against different elements at risk. Then, damage factor was used to represent the average proportion between the actual disaster loss of different elements at risk and the values of elements at risk themselves, and by which property vulnerability was analyzed. The life vulnerability was carried out quantitative analysis by assessment life value and the mortality rate of people in buildings. Third, from the framework, the village resilience capacity consisted of four parts: “the participation experience of disaster prevention drill”, “real-time monitoring system”, “the observation of the one’s own rainfall gauge” and “professional debris-flow volunteer”. Therefore, the scores got from village’s checklist, as well as the weight of every item were used to calculate village resilience capacity. Finally, according to the annual landslide probability and vulnerability result of property, the property risk map was drawn; next the annual landslide probability, vulnerability of life, and resilience capacity were combined to assess life risk; then the total risk map was drawn. This research also carried out risk analysis before and after risk reduction measures held in Shihmen reservoir watershed to get benefit value of different measures. Then benefit-cost analysis was conducted based on benefit value and the cost of risk reduction measures. Villages with high benefit-cost ratios of measures are Hua-Ling, Yi-Cheng, Xiu-Luan and Gao-Yi, which also suffer high annual life risk. The Yi-Cheng village with a high benefit-cost ratio of 192.19 and a low resilience capacity of 0.5716 could reduce its life risk by strengthening the risk reduction measures. The benefit-cost ratio of measures for whole watershed is markedly greater than 1.0. Analytical results showed that the risk reduction measures are cost-effective. Based on the results of sensitivity analysis, the change of property vulnerability and mortality rate would increase the uncertainty of risk values. Additionally, the higher interest rate or shorter life term would decrease the benefit-cost ratio. Nevertheless, the replacement of the mentioned factors does not reverse the cost-effective inference.
URI: http://hdl.handle.net/11455/33263
其他識別: U0005-3107201216272200
Appears in Collections:水土保持學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-8094042006-1.pdf20.1 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.