Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/33941
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liaw, T.M. | en_US |
dc.contributor.author | 李豐穎 | zh_TW |
dc.contributor.author | Huang, M.C. | en_US |
dc.contributor.author | Chou, Y.L. | en_US |
dc.contributor.author | Lin, S.C. | en_US |
dc.contributor.author | Li, F.Y. | en_US |
dc.date | 2006 | zh_TW |
dc.date.accessioned | 2014-06-06T07:46:55Z | - |
dc.date.available | 2014-06-06T07:46:55Z | - |
dc.identifier.issn | 1539-3755 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/33941 | - |
dc.description.abstract | The exact closed forms of the partition functions of a two-dimensional Ising model on square lattices with twisted boundary conditions are given. The constructions of helical tori are unambiguously related to the twisted boundary conditions by virtue of the SL(2,Z) transforms. The numerical analyses on the deviations of the specific-heat peaks away from the bulk critical temperature reveal that the finite-size effect of herical tori is independent of the chirality. | en_US |
dc.language.iso | en_US | zh_TW |
dc.relation | Physical Review E | en_US |
dc.relation.ispartofseries | Physical Review E, Volume 73, Issue 5. | en_US |
dc.relation.uri | http://dx.doi.org/10.1103/PhysRevE.73.055101 | en_US |
dc.subject | boundary-conditions | en_US |
dc.subject | klein bottle | en_US |
dc.subject | mobius strip | en_US |
dc.subject | statistics | en_US |
dc.subject | lattice | en_US |
dc.subject | heat | en_US |
dc.title | Partition functions and finite-size scalings of Ising model on helical tori | en_US |
dc.type | Journal Article | zh_TW |
dc.identifier.doi | 10.1103/PhysRevE.73.055101 | zh_TW |
item.openairetype | Journal Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | none | - |
item.fulltext | no fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 化學系所 |
TAIR Related Article
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.