Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34330
標題: 集水區泥砂產量推估及崩塌地植生復育率之研究
A study of watershed sediment yield estimation and the recovery rate of vegetation for landslide area in Chen-yu-lan Stream watershed
作者: 陳昱豪
Yu-Hau-Chen
關鍵字: 坡面沖蝕;Soil erosion;崩塌;植生復育率;泥砂產量;Landslide;Rate of vegetation recovery;Sediment yield
出版社: 水土保持學系所
引用: 引用文獻 1.工業技術研究院,(1998),石門水庫集水區崩塌地及土地利用航測調計畫整體報告書,工業技術研究院能源與資源研究所。 2.王如意、易任 (1979),「應用水文學」,國立編譯館,pp.377~382。 3.王俊哲(2003),「九二一集集大地震前後集水區泥砂量推估之探討-以烏溪支流北港溪集水區為例」,國立中興大學碩士論文,pp.52~61 4.王鑫(1977),「遙測學」,大中國出版社 5.田倚寧 (2005) ,「集水區降雨逕流與泥砂產量關係之研究」,pp.37~42。 6.行政院農業委員會(2004),「水土保持技術規範」,pp.36~58。 7.吳嘉俊、盧光輝、林俐玲編著,(1996),土壤流失量估算手冊,行政院農業委員會。 8.吳瑞鵬(2001),「九九峰921震災崩塌地植生復育率監測與評估」,國立中興大學碩士論文,pp67-68 8.林文賜(2002),「集水區空間資訊萃取及坡面泥砂產量推估之研究」,pp.44~49。 9.林美聆、陳榮河(2000),「坡地破壞」,921集集大地震大地工程震災調查報告,國家地震工程研究中心,pp. 1~33。 10.林孟龍、林俊全(1999),「曾文水庫集水區山崩之規模與頻率分析關係之探討」,國立台灣大學地理學系學報,26,pp.13-23 11.林俐伶(1995),覆蓋管理因子(C值)之評定,中美陡坡土壤流失量推估技術研討會論文集,pp.109-116 12.林文傑(1995)、「應用SPOT衛星影像進行山坡地土地利用分類之研究」,國立中興大學碩士論文,p78 13.林昭遠 林文賜(2001),「921震災崩塌地植生復育率監測與評估」,中華水土保持學報,32(1),pp.59-66 14.林昭遠,林文賜,2001,集水區資訊系統(WinGrid)入門,暐帥股 份有限公司。 15.林昭遠(2004),以遙測技術推估集水區泥砂產量,行政院農委c會水土保持局,pp81-91 16.林昭遠(2005),「應用生態指數探討九份二山、華山、草嶺地區植生復育之空間分布與調查分析」,行政院農委會水土保持局,成果報告書,p-42。 17.林昭遠、林文賜、張力仁(1999),「數值地形模型應用於集水區規劃與整治之研究」,中華水土保持學報,30(2),pp.149-155 18.洪如江(1998),「初等地質工程學大綱」,財團法人地工技術發展基金會。 19.范正成(1995),「土石流發生之水文及地文條件應用於土石流預警之研究」,國立台灣大學碩士論文,pp53 20.唐莎莉與梁隆鑫(1991),「多譜影像資料分類與地理資訊系統-蘭嶼實例」,遙感探測,14:1-17 21.國立台灣大學土木工程學研究所,(1990),台灣地區河系沖淤模式之發展與應用(一):以淡水河系大漢溪為應用對象,經濟部水資 源統一規劃委員會研究案。 22.國立台灣大學土木工程學研究所,(1991),台灣地區河系沖淤模式之發展與應用(二):以淡水河系大漢溪為應用對象,經濟部水資 源統一規劃委員會研究案。 23.國立交通大學防災工程研究中心,(2002),GSTARS 3.0模式訓練講習會課程講義,經濟部水利署。 24.張石角(2004),「特殊地質區與土石災害問題」,(2004),坡地防災創新研發成果研討會論文集,pp.85-92 25.陳中憲(1988),「濁水溪上游及曾文溪上游河道輸砂量及泥砂來源之關係探討」,國立中興大學碩士論文 26.陳俊宏(1999)、「地理資訊應用於土砂捍止保安林功用之分析」,國立中興大學碩士論文,p70 27.陳永寬(1994),「數值地形模型應用於潛在崩塌地之預測」,國立台灣大學農學院實驗林研究報告,第8卷第4期,pp.77-81 28.陳信雄 李錦育(1986),「森林對水資源涵養效益評估之研究」,中華林學季刊,19(4),pp.11-26 29.陳樹群、賴益成(1997),「集水區泥砂遞移率之推估研究」,國立中興大學碩士論文,pp.58~61 30.馮美禎 (2002),「台灣集水區泥砂遞移率之探討」,pp61~67 31.游繁結 (1996),「南投縣陳有蘭溪沿岸賀伯颱風災害初步調查報告」,行政院農委會及水土保持局,pp.12-16 32.廖軒吾(2000),「集集地震誘發之山崩」,國立中央大學地球物理研究所碩士論文。 33.黃俊德,(1979),「台灣降雨沖蝕指數的研究」,中華水土保持學報,10 (1): 127-144。 34.黃壹豐(1999),「瑞里地震誘發之山崩」,國立中央大學應用地質系碩士論文 35.萬鑫森 黃俊義(1981),「台灣西北部土壤沖蝕性及流失量之估算」,中華水土保持學報,12(1),pp.57-67 36.萬鑫森、黃俊義,(1989),台灣坡地土壤沖蝕,中華水土保持學 報,20(1):17-45。 37.歐陽元淳,(2003),「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,國立臺灣大學地理環境資源學研究所碩士論文。 38.鄭祈全(1995),「地理資訊在林地分級上之應用」,林業試驗所研究報告季刊,第10卷第2期,pp.241-254 39.盧光輝 林定宜(1995),「台灣北部地區坡地降雨之研究」,文化央大學地學研究所碩士論文,pp47 40.謝佳玲(1998),「不同土壤沖蝕模式推估土壤流失量之比較」國立中興大學碩士論文,pp42 41.Adeniny, P. O.,1980,”Land-use change analysis using sequential aerial photography and computer technique’, Photogrammetric Engineering and Remote Sensing, 46 , pp.1447-1464. 42.Ariathurai, R.,and R. B. Krone, 1976, Finite element model for cohesive sediment transport. J. Hydr. Div., ASCE,102, 323-338. 43.Benett, J.P., and C.F. Nordin, 1977, Simulation of sediment transport and armouring. Hydological Sciences Bulletin, XXII. 44. Burgan ,R.E., and R.A.Hartford,1993,”Monitoring Vegetation Greenness with Satellite Date”, USDA Forest Service Intermountion Research Station General Technical Report,pp297 45. Burrough,P.A ,(1987),Principles of Geogrphical information System for Land Resources Assessment. Oxford University, New York pp.1-12。 46.Cook, H. L., 1936, The nature and controlling variables of the water erosion process, Soil Sci. Soc. Am. Proc. 1, 60-64 47.Dai.F.C, and C.F Lee(2001),”Frequency-volume relation and prediction of rainfall-induced landslides . Engineering Geology,59,pp.253-266. 48.Dymond, J.R., M.R. Jessen, and L.R.Lovell , 1999, Computer simulation of shallow landsliding in New Zealand hill country, JAG, 1, 2, 122-131. 49.Ferro, V., Minacapilli, M., 1995, Sediment delivery processes at basin scale. Journal of Hydrological Processes, 12, 5, 703-717. 50.Happ, S.C,G, Rittenhouse,1940,「Some Principles of Accelerated Strea and Valley Sedimentation」,pp119-125 51.Khazai, B., and N. Sitar, , 2000 , ”Companion website for landslides in Native Ground : A GIS-Based Approach to Regional Seismic Stability Slope Stability Assessment”,http://www2.ced.berkeley.edu:8002/index2.html , [2002,March 20]. 52.Lin, C.Y., W.T. Lin, W.C. Chou , 2002, Soil erosion prediction and sediment yield estimation: the Taiwan experience. Soil & Tillage Research 68, 2, 143-152. 53.Musgrave, G. W., 1947, The quantitative evaluation of factors in water erosion: a first approximation. J. Soil & Water Conserv. pp.133-138. 54.Nelson, R. F.1983,”Detecting forest canopy change due to insect using Landsat MSS” , Photogrammetric Engineering and Remote Sensing, 49 ,pp.1303-1343. 55.Sim
摘要: 
Due to steep topography, vulnerable geology, and improper landuse, debris flow occurs frequently at the mountain areas of Taiwan where people suffers from disasters of debris flow especialy during the typhoon seasons. Casualties and property losses during the torrential rain period are very high. The main reason for faequantly happened hazands is the severe erosion caused by the intensive rain fall , and sediments from the slopeland slide into channels may deteriorate flood events and even cause debris flow. However, the mitigation methods need be based on the understanding of the mechanics about resons which cause hazards happened. The sediment yield estimation becomes an important task for the soil and water conservation works.
The study area is the Chen-yu-lan Stream watershed, the 921 earthquakes , typhoon Toraji, and the 72 Flood were the study events, and USLE(Universal Soil Loss Equation)was used to estimate soil loss from slopelands. The method suggested by Khazai and Sitar was employed to predict the landslide quantity. Algorithms of SDR (Sediment Delivery Ratio) and channel attenuation in a storm event and the SPOT satellite images and digital terrain models were used in the study to process the vegetation index analysis for identifying landslide sites, and estimating sediment yield. Results indicate that the sediment yield from the collapse d areas is far less then that from the slopeland and the hazard was friggered by the over-loaded quantity of sediments cause by severe storm event.
Satellite image was used to process the vegetation index analysis for identifying landslide sites of the 921 earthquakes. This research values the apocatastasis of surface of the earth from 1999 to 2004, and treats the correlation between topographic factor and the recovery rate of vegetation for the landslide. A system coupled with GIS developed in this research could be used to monitor and assess the recovery rate of vegetation for the landslide areas. The results show that after five years of the 921 earthquakes, the average rate of vegetation recovery for the landslides in the Chen-yu-lan Stream watershed areas is over 84%. This indicstes that vegetation recovery for those landslide areas is quite well.

近年來台灣山坡地飽受天然災害威脅,尤以921震災後及颱風暴雨帶來之損傷特別嚴重。由於陡峭的地形、脆弱的地質及不當的土地利用,山區暴雨期間頻仍的土石流發生造成人民生命與財產上的損傷。暴雨災害之產生源自於集水區坡面沖蝕與崩塌,泥砂流失進入河道形成挾砂水流甚至土石流,對保全對象造成極大的威脅。集水區崩塌地植生復育率與泥砂產量的探究為水土保持工作不可或缺的一環。
本研究以濁水溪流域陳有蘭溪集水區為對象,分析賀伯颱風、集集大地震、桃芝颱風、72水災等事件,藉由各時期SPOT衛星影像與DTM資料推估集水區崩塌地之植生復育狀況。另將集水區坡面土壤流失量和崩塌泥砂量配合泥砂遞移率觀念估算流入河道泥砂量。
利用衛星影像計算出常態化差異指標(NDVI),判釋921地震崩塌區位,研究評估自921震災至2004年地表植生恢復情形,進而探討各地形因子與崩塌地植生復育率之關係。分析結果顯示陳有蘭溪在921地震後五年,植生復育率平均值達84%,復原情形良好。
URI: http://hdl.handle.net/11455/34330
其他識別: U0005-0607200611594800
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.