Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34352
標題: Modeling of Granular Debris Flow Using Discontinuous Deformation Analysis
不連續變形分析法應用於礫石型土石流運動之研究
作者: 蕭沛佳
Hsiao, Pei-Chia
關鍵字: 不連續變形分析法(DDA);Key words: Discontinuous Deformation Analysis;礫石型土石流;Granular Debris Flow
出版社: 水土保持學系所
引用: 參考文獻 1. 江國豐(2004),”應用不連續變形分析法於順向岩坡穩定分析之探討”,碩士論文,國立高雄第一科技大學營建工程系 2. 李忠穎(2003).”DDA視窗化程式應用於三孔隧道開挖之力學機制研究”,碩士論文, 國立高雄第一科技大學營建工程系 3. 呂岡侃(2002),”南投縣久久峰土石流發生區之地形特徵”,碩士論文,國立台灣大學地理環境資源所 4. 林炳森、馮賜陽、李俊明(1993),”礫石層土石流發生特性之研究”,中華水土保持學報24(1):55~64 5. 林正道(2003),”土石流危險度之模糊迴歸分析和綜合評判”,碩士論文,中原大學土木工程學系 6. 邱創益(1996),”賀伯颱風對阿里山公路山區路段造成崩塌之調查分析”,賀伯颱風災害調查研討會論文集,國科會工程處工程科技推展中心,pp.1~15 7. 范正成、林森榮(1996), ”土石流防災與監測之研究:雨量分析、降雨預報應用於土石流預警系統(Ι)”, 行政院國家科學委員會成果報告, NSC86-2621-P-002-022(Ⅱ) 8. 姚善文(2001),”土石流發生之水文特性探討”,碩士論文,國立中央大學土木工程學系 9. 陳錦清 顧承宇 冀樹勇(1998),”不連續變形分析法之改進與大地工程上之應用”,財團法人中興工程顧問社 10. 陳晉琪(2000),”土石流發生條件及發生機率之研究”,博士論文, 國立成功大學水利及海洋工程學系 11. 陳志豪(2001),”北橫公路沿線岩坡傾倒破壞之研究”,碩士論文,中原大學土木工程學系 12. 陳榮河(2001),”土石流災害防治之研究(Ⅲ):以南投示範區陳有蘭溪為對象-子計畫:土石流發生機制之研究(三)”,行政院國家科學委員會成果報告,NSC 89-2625-Z-002-042 13. 陳漢平(2003),” 降雨入滲引致邊坡破壞機制之探討─以土石流源頭為對象”,碩士論文,台灣大學土木工程學系 14. 連惠邦 趙世照(1996),”溪床堆積土體崩壞模式及其土石流化之研究”,中華水土保持學報27(3):175~183 15. 游繁結(1987),”豐丘土石流災害之研究”,中華水土保持學報18(2):76~92 16. 游繁結(2003),”礫石層崩積土之土石流發生機制之研究”,行政院國家科學委員會成果報告,NSC 82-0414-P005-040-B 17. 游政勳、黃宏斌(2004),”土石流發生機制模式之研究”,農業工程學報50(1):35~49 18. 莊鴻榜(2001),”不飽和礫石土剪力強度之研究”,碩士論文,國立台灣大學土木工程學系 19. 張立憲(1985),”土石流特性之探討”,中華水土保持學報16(1):135~141 20. 詹錢登(2000),”土石流概論”,科技圖書股份有限公司 21. 鄧福勝(2001),” 含磚鋼筋混凝土結構非線性行為之數值模擬”,碩士論文,國立中央大學土木工程學系 22. 臺灣省水土保持局(1992),”水土保持手冊”,中華水土保持學會 23. 鄭瑞昌(1986),”土石流發生特性之初步研究”,碩士論文,國立中興大學水土保持學系 24. 謝正倫 江志浩 陳禮仁(1992),”花東兩縣土石流現場調查與分析”,中華水土保持學報23 ( 2 ) : 109~122 25. 謝正倫 陳禮仁(1993),” 土石流潛在溪流之危險度的評估方法”,中華水土保持學報24(1):13~19 26. 謝翠萍(2005),”材料空間變異性對軟岩邊坡穩定之影響”,碩士論文,朝楊科技大學營建工程系 27. 蘆田和男、高橋 保、道上正規(1983),”河川の土砂災害と對策”,森北出版株式會社,pp.55~75 28. Cheng, E. D. H. & Clyde, C. G. (1972), “Instantaneous hydrodynamic lift and drag forces on large roughness elements in turbulent open channel flow.” Symp. to Honor Prof. H. A. Einstein: Sedimentation, H.W. Shen, ed. 29. Hunter Rouse(1946),”Elementary Mechanics of Fluids”, J. Wiley & sons. 30. Jing, L. (1998), “Formulations of discontinuous deformation analysis for block systems,” Eng. Geol., vol. 49, pp. 371~381. 31. Jing, L.,Y. Ma, Z. Fang (2001),”Modeling of flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method”, International Journal of Rock Mechanics & Mining Sciences 38, pp.343~355. 32. Jing,L.(2003), ”A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering”, International Journal of Rock Mechanics & Mining Sciences 40, 283~353. 33. Kim, Y.I., B. Amadei, E. Pan(1999), ”Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis”, International Journal of Rock Mechanics & Mining Sciences 36, 949~970. 34. Koo, C.Y., J.C. Chern(1998),”Modification of the DDA Method for Rigid Block Problems”, Int. J. Rock Mech. Min. Sci. Vol.35, No.6, pp.683~693. 35. Lin,C.T., B. Amadei, J. Jung, J. Dwyer(1996),”Extensions of Discontinuous Deformation Analysis for Jointed Rock Masses”, International Journal of Rock Mechanics & Mining Sciences 33, pp.671~694. 36. O’brien, J. S., Julien, P. J., Fullerton, W. T. (1993), “Two-Dimensional water flood and mudflow simulation, “ Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 2, pp. 244-261. 37. Reid,M.E., D.L. Brien, R.G. LaHusen, J.J. Roering, J. de la Fuente, S.D. Ellen (2003),”Debris-flow initiation from large, slow-moving landslides”, Debris-Flow Hazards Mitigation, 155~166. 38. Shi,G.H.(1989),”Block System Modeling by Discontinuous Deformation Analysis”, Ph.D. Thesis. 39. Tsesarsky, M. and Y.H. Hatzor (2005), “Tunnel roof deflection in blocky rock masses as a function of joint spacing and friction – A parametric study using discontinuous deformation analysis (DDA),” Tunnelling and Underground Space Technology, In Press. 40. Varnes, D.J. (1978), “Slope movements and type and processes in: Landslide Analysis and Control”, Transportation Res. Board Nat. Ac. Sci. Washington Spec. Rep. 41. Wu, J.H., Y. Ohnishi, S. Nishiyama(2004), “Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis (DDA)”, International Journal of Rock Mechanics and Mining Sciences 41, pp.731~743 42. Wu, J.H., W.N. Wang, C.S. Chang, C.L. Wang(2005), “Effects of strength properties of discontinuities on the unstable lower slope in the Chiu-fen-erh-shan landslide, Taiwan”, Engineering Geology 78 pp.173~186 43. Yang, C.T.(1996),”Sediment transport theory and practice”, McGraw-Hill, 19~48. 44. Zhang, M., H. Yang and Z. Li (2005), “A Coupling Model of the Discontinuous Deformation Analysis Method and the Finite Element Method,” Tsinghua Science & Technology., Vol. 10, pp. 221~226. 45. http://cgicenter.csu.edu.tw/csitshow/practice/techser/docum_7.pdf
摘要: 
The hazards of debris flow triggered by earthquake activities and heavy rainfalls occur frequently in Taiwan along the past decades. Especially after the 921 earthquake in 1999, considerable damages of debris flow hazards in hillside resident areas are increasing dramatically in which debris flow become a major obstacle for engineers to deal with. Accordingly, the study on the mitigation of debris flow hazards is the major concern in Taiwan.

Based on the observation from colluviums of conglomerate formation in certral and east Taiwan, it is found that the granular debris flow is the major type in these areas. The Discontinuous Deformation Analysis (DDA) is therefore adopted to study the initiation and mechanism of the granular debris flow. To properly model the behaviour of the granular debris flow, several modifications including the consideration of water effects, linear distributed line load, and drag forces have been made.

The methodology proposed in this study has been examined through the calculation of a number of numerical examples and comparison with available analytical results. Application examples were also provided to demonstrate the applicability of the revised DDA method. In addition, the influence of several important factors such as slope, friction angle, and water depth (or flow discharge) on the initiation of the granular debris flow were studied. The results obtained show that: (1) the DDA method can be a useful tool to model the initiation and mechanism of the granular debris flow under different situations, and (2) the hydrodynamic mechanism of mixed fluid and solid particles needs to be further studied.

台灣地區因山坡地開發過度,導致地貌改變,加以九二一地震後地表土質鬆散,故每逢颱風豪雨來襲,各地土石流災情頻傳,近年來災害規模更是嚴重,所以土石流問題已成為現今國人所重視的課題,並不斷的投入調查及研究。

綜合災害案例顯示,台灣中部及東部地區多礫石層崩積土之分佈,因此多形成礫石型土石流之災害,故本研究針對礫石型土石流發生之機制,利用不連續變形分析法(DDA)建立模擬土石流運動之理論與程式架構,並進行初步之應用,以期使DDA能模擬更為複雜與實際之案例。

本研究考慮形成土石流的重要因子,利用DDA進行數值模擬分析,在分析過程中探討坡度、摩擦角及水位等不同的變因對土石流的影響,並進一步應用於研究土石流之啟動機制。分析結果顯示,DDA對於土石流運動之模擬有不錯之適用性,惟對於模擬土石流中水的影響方面,需再深入研究以獲得更接近現地狀況之力學行為。
URI: http://hdl.handle.net/11455/34352
其他識別: U0005-1108200609092500
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.