Please use this identifier to cite or link to this item:
標題: Investigations of Typhoon Rainfall Spatial Distribution Variations in Nan Shih Creek Watershed of Northern Taiwan
作者: 王仲豪
Wang, Jong-Hao
關鍵字: Nonparametric Statistics;無母數統計;Geostatistics;Semivariogram;Kriging;Areal Reduction Factor;地理統計;半變異函數;克利金法;面積遞減因子
出版社: 水土保持學系所
引用: 1. 中央氣象局,(1958~2001), “颱風調查報告”,台北。 2. 中央氣象局,(2006), “颱風資料”, 3. 王如意、何輔仁、謝平城,(1994), “以克利金法應用於坡地集水區水文分析之研究”,行政院農業委員會研究計畫報告。 4. 王如意、易任,(1999), “應用水文學”, 國立編譯館。 5. 王政權,(1999), “地統計學及在生態學中的應用”,科學出版社,北京。 6. 台北水源特定區管理委員會,(1985), “南北勢溪水區治理初步調查規劃報告”,台北。 7. 石棟鑫,(2001), “台灣地區颱風雨降雨型態之分析研究”,國立中央大學土木工程學系碩士論文。 8. 行政院農業委員會水土保持局,(2001), “重建區雨量站址評選之適合性研究”,南投。 9. 行政院農業委員會水土保持局,(2002), “崩塌地調查與持續演變趨勢觀測”,南投。 10. 行政院農業委員會水土保持局,(2006), “土石流防災應變系統”,。 11. 芮孝芳,(2004), “水文學原理”,北京。 12. 林金樹、陳峰盛,(2002), “空間統計之半變異數模式對推估降雨量空間分布之影響”,2002中華地理資訊學會年會暨學術研討會。 13. 林淑玲,(2002), “宜蘭地區颱風降雨與地形、空間分布關係之探討”,國立中興大學水土保持學系碩士論文。 14. 林清豐,(1989), “雨量空間分佈特性之研究”,國立台灣大學土木工程學系碩士論文。 15. 徐義人,(2003),“應用水文學”,國立編譯館,台北。 16. 陳文福、王仲豪,(2000), “空間降雨資料模式之研究”, 水土保持學報,32(1):11-24。 17. 陳堯風,(1996), “北部地區降雨面積遞減曲線建立之研究”,國立台灣大學碩士論文。 18. 曹舜評、李汴軍、許中立,(2003), “南勢溪集水區坡地災害之水文特性研究(I) ”,行政院國家科學委員會專題研究計畫。 19. 張仁鐸,(2005), “空間變異理論及應用”,科學出版社,北京。 20. 黃信誠,(2000), “空間統計簡介”,自然科學簡訊,12(3):101-104。 21. 湯國安、趙牡丹,(2001), “地理信息系統”,科學出版社,北京。 22. 經濟部水資源局,(2001), “水文設計應用手冊”,台北。 23. 經濟部水利署,(2000~2003), “台灣地區降雨深度-面積-延時曲線之建立”,台北。 24. 經濟部水利署,(2005), “中華民國九十三年台灣水文年報第一部份-雨量”,台北。 25. 顏月珠,(1987), “應用數理統計學”,三民書局,台北。 26. Armstrong, M., (1998), “Basic linear geostatistcics,” Springer-Verlag, Berlin. 27. Asquith, W. H., and J. S. Famiglietti, (2000), “Precipitation areal-reduction factor estimation using an annual-maxima centered approach,” Journal of Hydrology, 230: 55-69. 28. Bacchi, B., and R. Ranzi, (1996), “On the derivation of the areal reduction factor of storms,” Atmospheric Research, 42: 123-135. 29. Berndtsson, R. and J. Niemczynowicz, (1986), “Spatial and temporal characteristic of high-intensity rainfall in northern Tunisia,” Journal of Hydrology, 87: 285-298. 30. Berndtsson, R., and J. Niemczynowicz, (1988), “Spatial and temporal scales in rainfall analysis-some aspects and future perspectives,” Journal of Hydrology, 100: 293-313. 31. Bernhardsen, T., (1999), “Geographic information systems: an introduction–2nd ed.,” John Wiley & Sons, Inc. NY. 32. Bras, R. L., (1990), “Hydrology: an introduction to hydrologic science,” Addison-Wesley Publishing Company, Massachustts. 33. Chow, V.T., D. R. Maidment, and L. W. Mays, (1988), “Applied Hydrology,” McGraw-Hill Book Company, NY. 34. Creutin, J. D., and C. Oled, (1982), “Objective analysis and mapping techniques for rainfall fields: an objective comparison,” Water Resources Research, 18(2): 413-431. 35. De Michele, C., N. T. Kottegoda, and R. Rosso, (2001), “The derivation of areal reduction factor of storm rainfall from its scaling properties,” Water Resources Research, 37: 3247-3252. 36. Einfalt, T., G. Johann, and A. Pfister, (1998), “On the spatial validity of heavy point rainfall measurements,” Water Science Technology, 37(11): 21-28. 37. Goovaerts, P., (2000), “Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall,” Journal of Hydrology, 228: 113–129. 38. Hershfield, D. M., (1962), “Extreme rainfall relationships,” Proc. ASCE., Journal of Hydraulic Division, 88(6): 73-79. 39. Heywood, I., S. Cornelius, and S. Carver, (1999), “An introduction to Geographical Information Systems,” Addison Wesley Longman, London. 40. Isaaks, H. E., and R. M. Srivatava, (1989), “Applied Geostatistics,” Oxford University Press, Inc., New York. 41. Journel, A. G., and C. J. Huijbregts, (1978), “Mining geostatistics,” Academic Press, London. 42. Köhl, M. and G. Gertner, (1997), “Geostatistics in Evaluating Forest Damage Surveys: Considerations on Methods for Describing Spatial Distributions”, Forest Ecology and Management, 95(1997): 131-140. 43. Kothyari, U. C., and G. J. Garde, (1992), “Rainfall intensity-duration-frequency formula for India,” Journal of Hydraulic Engineering, 118(2): 232-336. 44. Lebel, T., G. Bastin, C. Obled, and J. D. Creutin, (1987), “On the accuracy of areal rainfall estimation: a case study,” Water Resources Research, 23(11): 2123-2134. 45. Miller, H. J., (2004), “Tobler’s first law and spatial analysis,” Annals of Association of American Geographers, 94(2): 284-289. 46. Naoum, S., and I. K. Tsanis, (2003), “Temporal and spatial variation of annual rainfall on the island of Crete, Greece,” Hydrological Process., 17:, 1899-1922. 47. Omolayo, A. S., (1993), “On the transposition of areal reduction factors for rainfall frequency estimation,” Journal of Hydrology, 145: 191-205. 48. Pardo-Igúzquiza, E., (1998), “Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography,” International Journal of Climatology, 18: 1031–1047. 49. Sivapalan, M., and G. Blöscl, (1998), “Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves,” Journal of Hydrology, 204: 150-167. 50. Skaugen, T., (1997), “Classification of rainfall into small- and large-scale events by statistical pattern recognition,” Journal of Fydrology, 200: 40-57. 51. Veneziano, D., and A. Langousis, (2004), “The rainfall areal reduction factor: A multifractal analysis,” European Geostatistics Union 1st General Assembly, Nice, France. 52. Viessman, Jr. W., G. L. Lewis and J. W. Knapp, (1989), “Introduction to hydrology 3rd edition,” Harper Collins Publishers, NY.
Rainfall caused by typhoon is not only the important income of water resources, but also the key factor of disturbing the spatial distribution of soil and water resources in Taiwan. It will be help to realize the spatial distribution of soil and water resources and movement of sedimentation for our homeland by studying the spatial variations of typhoon rainfall.
Watershed is a unit of topography and an elementary area that applied for the topics of spatial hydrology and sediment movement. This study first used the first law of geography and nonparametric statistics test, and then chose 19 rain gauge stations to analyze the spatial variations of typhoon rainfalls by areal reduction factor curves in the Nam Shih Creek watershed of Northern Taiwan for different durations and return periods.
The results of typhoon rainfall spatial distribution from semivariograms analysis of different durations and return periods showed that the range is about 7.4km, and the spatial variation increasing by durations and return periods under the range in this site.
The semivariogram models built by former analysis used as the input functions for Kriging that making isohyetal maps by integrating GIS. From the isohyetal maps, we can display the spatial distribution of rainfall caused by typhoons in Nan Shih Creek watershed. The spatial distributions of typhoon rainfall lessen gradually from east to west and south to north in this area. Such being the cases, the apparent spatial variations of typhoon rainfall is in the eastern and southern parts of this watershed.
For the sake of understanding the relationship between typhoon rainfall degradation and area of distribution, this study applied the isohyetal maps that drawn in the former part to extract areal reduction factors of different durations and return periods, and forming the areal reduction factor curves. As a result of areal reduction factor curves, the areal reduction factors of typhoon rainfalls decayed with accumulative areas of spatial distribution by the power law. The areal reduction factor curves decrease mildly with the rainfall durations on increasing in the fixed return period. In the condition of fixed durations, the areal reduction factor curves also grow less mildly with the return periods extend. In previously description, it shows that the spatial variations of typhoon rainfall trend unvarying in Nan Shih Creek watershed.

其他識別: U0005-2106200611325400
Appears in Collections:水土保持學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.