Please use this identifier to cite or link to this item:
標題: 地震誘發地滑之數值模擬
Numerical Modeling of Landslides Induced by Earthquakes
作者: 王勝賢
Wang, Sheng-Hsien
關鍵字: 有限元素法;finite element method;動態應力分析;累積位移量;臨界加速度;dynamic stress analysis;accumulative displacement;critical acceleration
出版社: 水土保持學系所
引用: 1.中央氣象局網站,(2005)。 2.王士榮,2002,以位移法分析自然邊坡在地震力作用下的平面式破壞,國立成功大學資源工程學系,碩士論文。 3.王元度,2005,小型振動台之模型邊坡動態試驗研究,國立臺灣大學土木工程學研究所,碩士論文。 4.王國隆,2004,小型振動台試驗說明書。 5.呂政諭,2001,地震與颱風作用下阿里山地區公路邊坡崩壞特性之研究,國立成功大學土木工程研究所,碩士論文。 6.李正楠,2000,草嶺崩坍地受震行為初探,國立臺灣大學土木工程研究所碩士論文。 7.李馨慈,2004,應用累積位移法於地震引起之山崩潛勢分析,國立成功大學資源工程學系,碩士論文。 8.林孟賢,2001,集集地震災後山區道路邊坡崩塌調查與其破壞行為分析研究,國立屏東科技大學土木工程系,碩士論文。 9.林慶偉、劉守恆、溫振宇, 2004,地震引發地質災害問題探討,2004年台灣活動斷層與地震災害研討會,pp.1–10。 10.洪如江、林美聆、陳天健、王國隆, 2000,921 集集大地震相關的坡地災害、坡地破壞特性、與案例分析,地工技術,第81期,pp.17–32。 11.徐鐵良,1993,地質與工程,中國工程師學會。 12.高贈智,2004,集集地震引致臺灣中部山區邊坡臨界滑移量之分析,國立臺灣大學土木工程學研究所,碩士論文。 13.國家地震工程研究中心,1999,921 集集大地震大地工程震災調查報告。 14.國家地震中心工程研究中心所網站,(2005)。 15.張國欽,2005,邊坡在降雨入滲狀況下之穏定性分析與評估,國立中興大學水土保持學系,碩士論文。 16.許煜煌,2002,以不安定指數法進行地震引致坡地破壞模式分析,國立台灣大學土木工程學研究所,碩士論文。 17.陳時祖、溫郁菁、彭文飛、蘇容瑩,2002,以位移法分析自然邊坡破壞行為之研究及應用,地震衍生之邊坡破壞行為之研究及應用,九十一學年度期中研究成果研討會論文集,頁1-24。 18.陳意璇,2002,溪頭地區山崩潛感圖製作研究,國立臺灣大學土木工程學研究所,碩士論文。 19.彭文飛,2001,以位移法分析自然邊坡在地震時之破壞行為的初步探討,國立成功大學資源工程學系,碩士論文。 20.黃臺豐,1999,瑞里地震誘發之山崩,國立中央大學應用地質研究所,碩士論文。 21.楊佳勳,2001,地震對控制邊坡破壞之內在因子的影響之研究,國立成功大學地球科學研究所,碩士論文。 22.楊凌翔,2005,地震引致之山崩條件式機率預測模式-以集集地震為例,國立臺灣大學土木工程學研究所,碩士論文。 23.溫郁菁,2003,以位移法分析自然邊坡在地震力作用下的曲面形破壞,國立成功大學資源工程學系,碩士論文。 24.廖南華,2003,土壤經驗參數於數值分析之應用,國立成功大學土木工程研究所,碩士論文。 25.廖軒吾,2000,集集地震誘發之山崩,國立中央大學地球物理研究所,碩士論文。 26.鄭傑銘,2003,應用GIS進行豪雨及地震引致山崩之潛感性分析,國立臺灣大學土木工程學研究所,碩士論文。 27.Ambraseys, N. N., Menu, J. M.,(1988). “Earthquake-induced ground displacements”,Earthquake Engineering and Structural Dynamics, Vol. 16, p. 985-1006. 28.Ambraseys, N. N., Srbulov, M.,(1994). “Attenuation of earthquake-induced ground displacements”, Earthquake Engineering and Structural Dynamics, Vol. 23,pp. 467–487,. 29.Arias, A., (1970). “A Measure of Earthquake Intensity”, in R.J. Hansen, ed. Seismic Design for Nuclear Power Plants, MIT Press, Cambridge, Massachusetts,pp.438–483. 30.Bath,K-J.,(1982).Finite Element Procedures in Engineering Analysis.Prentice-Hall. 31.C.E. Rodrı´guez, J.J. Bommer, R.J. Chandler ,(1999). “Earthquake-induced landslides: 1980–1997”,Soil Dynamics and Earthquake Engineering, Vol.18, pp.325–346. 32.Chang C.J,Chen.W.F. and Yao, J.T.P.,(1984). “Seismic displacement in slopes by limit analysis.”Journal of Geotechnical Engineering, Vol.100, No7,July. pp.860–874. 33.Chen, W.F and Liu, X. L.,(1990). “Limit analysis in soil mechanics”,Developments in geotechnical engineering ,Vol.52 , pp.405–429. 34.Chen, W.F.,Giger, M.W.,Fang, H.Y.,(1969).“On the limit analysis of slopes”,Soil and Foundations,,Vol.9,pp.23–32.1969 . 35.Crespellani, T., Madiai, C., & Vannucchi, G.,(1998). “Earthquake Destructiveness Potential Factor and Slope stability”, Geotechnique ,Vol.48, No.3, pp.411–419. 36.Fang, Y.S., Chen, T.J., Holtz, R.D. and Lee, W.F., (2004). “Reduction of Boundary Friction in Model Tests,” Geotechnical Testing Journal,Vol.27, No.1. 37.Gutenberg,B.(1945). “Magnitude determination for deep-focus earthquakes”, Bulletin of the Seismological Society of America,Vol.35,pp.117-130. 38.Gutenberg,B.,(1945). “Magnitude determination for deep-focus earthquakes,”Bulletin of the Seismological Society of America,Vol.35,pp.117-130. 39.Gutenberg,B.,and Richter,C.F., (1936).“On Seismic Wave(third paper) ”,Gerlands Bietraege zur Geophysik,Vol.47,pp.73-131. 40.Hanks,T.C.and Kanamori,H.,(1979). “A moment magnitude scale”,Journal of Geophyscial Research, Vol.84, pp.2348–2350. 41.Hynes-Griffin,M.E.and Franklin,A.G.,(1984). “Rationalizing the seismic coefficient method”,Miscellaneous Paper GL-84-13,U.S.Army Corps of Engineers Waterway Experiment Station ,Vicksburg,Mississippi,21 pp. 42.Jibson, R. W., Keefer, D. K.,(1993). “Analysis of the seismic origin of landslides:examples from New Madrid seismic zone”, Geological Society of America Bulletin, Vol. 105, pp.521-536. 43.John Krahn,(2004).“Dynamic Modeling with QUAKE/W”,An Engineering Metholdogy,GEO-SLOPE/W International Ltd,Canada. 44.John Krahn,(2004).“Stability Modeling with SLOPE/W”,An Engineering Metholdogy,GEO-SLOPE/W International Ltd,Canada. 45.Kanamori,H.(1977). “The Energy Release in Great Earthquakes”,Journal of Geophyscial Research, Vol.82, pp.2981–2987. 46.Hank,T.C.and Kanamori,H.(1979). “A moment magnitude scale”, Journal of Geophyscial Research, Vol.84, pp.2348–2350. 47.Keefer, D. K.,(2000).“Statistical analysis of an earthquake-induced landslide distribution -the 1989 Loma Prieta, California event”, Engineering Geology, Vol. 58, No. 3–4, pp.231–249. 48.Keefer, D.K.,(1984)“Landslides caused by earthquakes”, Geol. Soc. Am. Bull. Vol.95,pp.406–421. 49.Kramer, S. L., and Matthew, W. S., (1997).‘‘Modified Newmark model for seismic displacement of compliant slopes.’’ Journal of Geotechnical and Geoenvironmental Engineering , Vol. 123 , No. 7, pp.635–644. 50.Kramer, S.L., (1996) .Geotechnical Earthquake Engineering, Prentice-Hall International Series in civil Engineering Mechanics. 51.Ling, H.I., Leshchinsky, D.,Mohri, Y.,(1997) “ Soil slopes under com- bined horizontal and vertical seismic accelerations.” Earthquake Engineering and structural dynamic ,Vol.26, pp.1231-1241. 52.Ling,H.I.,(2001). “Recent applications of sliding block theory to geotechnical design. ” Soil Dynamics and Earthquake Engineering, Vol.21, pp.189–197. 53.Ling,H.I.,Mohri, Y.,Kawabata, T,(1999). “Seismic analysis of sliding wedge:extended Francais-Culmann’s analysis”, Soil Dynamics and Earthquake Engineering,Vol.18,pp.387–393. 54.Newmark,N.M.,(1965). “Effects of Earthquake on Dams and Embankments , ”Geotechnique ,Vol.15, No. 2, pp.139–159. 55.QUAKE/W,(1991–2002) , Version 5, USER’S GUIDE , GEO-SLOPE/W International Ltd,Canada. 56.Richter,C.F., (1935).“An instrumental earthquake scale”, Bulletin of the Seismological Society of America,Vol.25,pp.1-32. 57.Romeo, R.,(2000) “Seismically induced landslide displacements: a predictive model”,Engineering Geology, Vol. 58, pp.337–351, 58.Siddharthan,R.V. and EL-Gamal, M., (1998).“Permanent Rotational Deformation of Dry Cohesionless Slopes Under Seismic E xcitations.” Transport. Res. Rec., Vol.1633, pp.45–50 . 59.SLOPE/W,(1991–2002) , Version 5 , USER’S GUIDE , GEO-SLOPE/W International Ltd,Canada. 60.Varnes, D. J., (1978). “Slope movement types and processes.” in Landslieds:Analysis and Control, Transportation Research Board Special Report 176, National Academy of Sciences ,Washington, D. C., pp.12–33. 61.Whitman, R.V., and Richart, F.E., Jr.,(1967). “Design Procedures for Dynamically Loaded Foundations.”Journal of the Soil Mechanics and Foundations Division,ASCE,Vol.93,No.SUM6,pp.169-193. 62.Wieczorek, G. F., Wilson, R. C., and Harp, E. L., (1985).Map showing slope stability during earthquakes of San Mateo County, California: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-1257E, scale 1:62500. 63.You,L., Michalowski,R.L.,( 1999). “Displacement charts for slopes subjected to seismic loads.”Computers and Geotechnics Vol.25 , pp.45–55. 64.Zienkiewicz, O.C.and Taylor,R.L.,(1989).The Finite Element Method,4th Ed.,Vol.1.McGraw-Hill.
The Chi-Chi earthquake (921 Quake) possesses a Richarter Magnitude of 7.3 occurred at the central part of Taiwan on 21, September, 1999 and caused large scale and extensive slope failure at the mountain area. As a consequence, the earthquake induced slope failure becomes one of the most critical issues among the relevant research work of natural disaster prevention in Taiwan. In conventional engineering analysis, it is common to evaluate the stability of hill slope using pseudo-static analysis method when subjected to the earthquake loading. However, the aforementioned method is unable to calculate the stress distribution, accumulative displacement, and failure mode of the slope during earthquake. This study performs a systematic dynamic stress analysis on a series of fictitious hill slope using finite element method to calculate the time history curves of factor safety FS(t)~t, acceleration a(t)~t and FS(t)~ a(t) of the sliding mass. According to the FS(t)~ a(t) curve, the critical acceleration ac for a sliding slope can be determined. Eventually, the accumulative displacement of sliding block Δ can be computed by Newmark’s sliding block analysis theory and used to evaluate the stability and failure mode of the slope when subjected to earthquake loading.
Using two dimensional finite element method of dynamic stress stability analysis, this study attempts to establish a stability evaluation model of hill slope during earthquake. Firstly, the experimental results of a small scale shaking table test in laboratory were used to calibrate the reliability and effectiveness of the proposed numerical procedures. Subsequently, three modes of earthquake acceleration time history curves entitled E5、E6 and E7 were selected from the data bank of 921 Quake of Central Weather Bureau and used as earthquake loading inputs for the dynamic stability analysis of several fictitious slopes. The E5、E6 and E7 are real time acceleration time history curve and can be used to represent the earthquake intensities I values equivalent to levels 5, 6 and 7 in Taiwan respectively. Through the input of three earthquake loading modes E5、E6 and E7, the parametric study of various influence factors on the slope stability such as stratum material, slope inclination and slope height can be carried out. At last the weighting rate of various influence factors on the failure potential of hill slope subjected to earthquake loading can be evaluated quantitatively.
For the numerical simulations of small scale shaking table test, the calculated slope profile after vibration indicates the crown of slope moves backward with a displacement of 7.5 mm. The calculation is slightly overestimated than the measurement of 5.0 mm from experiment. In conclusion, the failure mode and displacement quantity of the slope after vibration are still falling within the reasonable range.
From numerical results, for a fictitious slope with specific baseline value of material and subjected to E7 earthquake loading mode, it is found that the potential of slope failure may relatively increases if the hill slope is categorized more than Grade 4 (with slope angle>21.8°or slope inclination>40%) and with slope height more than 10 m.
In addition, the critical acceleration ac decreases with the increase of unit weight of stratum material. This implies that under a specific topographic condition, an increase of unit weight will impose a higher failure potential to the hill slope during earthquake. Moreover, in the aspect of strength parameters of stratum material, the increases of cohesion c and friction angle φ will reduce the failure potential of hill slope during earthquake.
Further, the numerical results reveal the calculated acceleration time history curve of sliding block has higher similarity with those of the motion of rigid body if the Young’s modulus of block material E greater than 8,000 kN/m2. In other word, the block material with E>8,000 kN/m2 is appropriate for the application of Newmark sliding block method to calculate the accumulative displacementΔduring earthquake. In addition, the damping ratio of material D is used to express the extent of dissipation of internal energy when subjected to the vibration loading. For the material with lower damping ratio, the energy of earthquake is mainly used to generate the kinematic energy of sliding block and as a result the Δ value will increase with the kinematic energy of the sliding block. Finally, the numerical results also show that the critical acceleration ac of the slope is independent of the values of D, E and the earthquake loading mode.

1999年9月21日,於台灣中部發生規模7.3之集集大地震,其中地震誘發邊坡破壞的問題成為台灣自然災害研究的重要課題之一。一般傳統工程分析上,多採用擬靜態法來評估邊坡受地震力作用時之邊坡穩定性問題,此類分析法無法反應邊坡在受振過程中的應力分佈、累積變位量及破壞模式。本研究採用有限元素分析法進行邊坡動態應力分析,決定邊坡之地震安全係數歷時曲線FS(t)~t、地震加速度歷時曲線a(t)~t及FS(t)~ a(t)曲線,並由上述歷時曲線求取邊坡之臨界加速度ac值。最後,採用Newmark滑動塊體分析理論,求取邊坡之累積位移量Δ,並據以評估地震誘發邊坡破壞及穩定性。
由小型振動台模型實驗數值模擬結果求得滑動面坡頂較原坡面者後移7.5 mm,此計算值較實驗量測值5.0 mm稍大。但總體而言,其位移模式及大小仍屬可接受之範圍。
由數值分析結果得知,虛擬邊坡之材料在特定基線值條件下,並承受地震模式E7(地震震度I=7級之相當地震加速度歷時曲線)之作用時,若邊坡之坡級在超過4級(坡角=21.8°,坡度40%)以上且坡高超過10 m之情況下,地震誘發邊坡破壞之潛勢相對較高。
再者,研究顯示當塊體材料之楊氏模數E>8,000 kN/m2時所計算求得之塊體加速度歷時曲線較符合剛體運動行為,亦即其材料特性較適宜採用Newmark滑動塊體法之累積位移量計算。另外,地層材料之阻尼比D用來表示材料在受振過程中,內能耗損之程度。在阻尼比值較低之情況下,邊坡受振搖動時內能耗損較小,主要地震能量用來產生塊體滑動動能,因此,Δ值將相對增大。分析結果同時顯示,臨界加速度ac值並不會隨著輸入阻尼比D、楊氏模數E及地震模式之不同而有所變化。
其他識別: U0005-2701200710451600
Appears in Collections:水土保持學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.