Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34508
標題: Study on the Initiation Mechanism of Debris-Flow Along the Gravel Slope
礫石坡面土石流發生機制之探討
作者: Wu, Jen-Ming
吳仁明
關鍵字: 礫石坡面土石流;Gravel slope debris flow;崩塌;溪流型土石流;發生機制;臨界坡度;landslide;channel-type debris flow;initiation mechanism;critical slope
出版社: 水土保持學系所
引用: 1. 工業技術研究院(2002),91年度崩塌地特定水土保持劃定計畫草案,水土保持局,第10-1~10-40頁。 2. 中華水土保持學會(2005),水土保持手冊,第工-1-23頁。 3. 王士革(1999),山坡型泥石流的危害防治,中國地質災害與防治學報,第10卷,第3期,第45-50頁。 4. 王隆昌(2005),溪頭地區坡地型土石流地形及發生特性研究,成功大學地球科學系碩士論文,第7-18頁。 5. 中央大學太空及遙測中心(2004),七二水災崩塌地判釋與分析,水土保持局,第33-42頁。 6. 中央警察大學(2004),台灣歷年來土石流災害及其相關救災及其相關資料之查詢、展示、分析系統,內政部消防署,第52-61頁。 7. 尹承遠、翁勳政、吳仁明、歐陽湘(1993),台灣土石流之特性,工程地質技術應用研討會(V),第70-90頁。 8. 台北市水土保持技師公會(2002),大台北都會型坡地災害研討會,台北市政府,第32-82頁。 9. 行政院農業委員會(2003),土石流潛勢溪流後續調查與演變趨勢觀測計畫,執行單位:國立台灣大學、逢甲大學、國立成功大學。 10. 李焯芬、陳虹(1997),香港滑坡泥石流成因及治理,中國地理學報,第52卷增刊,第114-122頁。 11. 呂岡侃、徐美玲(2004) ,南投縣九九峰土石流發生區之地形特徵,地理學報,第38期,第1-16頁。 12. 呂岡侃(2002),南投縣九九峰土石流發生區之地形特徵,國立台灣大學地理環境資源所碩士論文,第12-16頁。 13. 吳正雄、江永哲(1985),林口台地林地之地形因素與土石流發生之關係研究,中華水土保持學報,第16卷,第2期,第48-58頁。 14. 吳積善(1990),雲南蔣家溝土石流觀測之研究,中國科學出版社,第28-30頁。 15. 林俊全(1994),礫岩邊坡沖蝕觀測之研究-以台灣中西部火炎山地區為例,台大地理學報(17),第47-64頁。 16. 林炳森、馮賜陽、李俊明(1993),礫石層土石流發生特性之研究,中華水土保持學報,第24卷,第1期,第55-64頁。 17. 周憲德(2002),土石流潛勢判定模式之研究(三),行政院國科會專題研究計畫成果報告,第23-40頁。 18. 周憲德、廖偉民(1998),超額孔隙水壓對溪床土石流發生機制之研究,第九屆水利工程研討會,第H69-H77頁。。 19. 周必凡、李德碁、羅德富、呂儒仁、楊慶溪(1991),泥石流防治指南,中國科學出版社,第5-20頁。 20. 段錦浩等(2004),艾利風災五峰鄉桃山村土石災害初步治理規劃,中華水土保持學會-2004坡地防災創新研發成果研討會,第180-196頁。 21. 游繁結(1993),礫石層崩積土之土石流發生機制之研究,行政院國家科學委員會防災科技研究報告,NSC-82-0404-P005-040B,第8-15頁。 22. 范正成(1996),土石流防災與監測之研究-雨量分析、降雨預報應用於土石流預警(一),行政院國家科學委員會防災科技研究報告,NSC-85-2621-P002-052,第6-8頁。 23. 范正成(1997),土石流防災與監測之研究-雨量分析、降雨預報應用於土石流預警(二),行政院國家科學委員會防災科技研究報告,NSC-86-2621-P002-022,第4-15頁。 24. 范正成(1998),土石流防災與監測之研究-雨量分析、降雨預報應用於土石流預警(三),行政院國家科學委員會防災科技研究報告,NSC-87-2621-P002-039,第7-13頁。 25. 游繁結(1990),崩落型土石流之機制研究,行政院國家科學委員會防災科技研 究報告,NSC-78-0404-P005-06B,第3-8頁。 26. 游繁結(1987),土石流之基礎研究(一):土石流發生機制之研究,中華水土保持學報,第18卷,第2期,第28-40頁。 27. 唐邦興等(2000),中國泥石流,中國科學院水利部成都山地災害與環境研究所,第19-25頁。 28. 連惠邦、林柏壽、薛祖淇(2000),主動崩落型土石流流出特性之試驗研究,中華水土保持學報,第 31 卷第 3 期,第 217-226 頁。 29. 連惠邦(1995),礫石型土石流流體性質與運動特性之相關研究,博士論文,中興大學水土保持學研究所,第97-105頁。 30. 陳俞旭(2001),崩塌物形成土石流之變遷過程研究,成功大學水利及海洋工程學系碩士論文,第9-31頁。 31. 陳晉琪(1999),土石流發生條件及發生機率之研究,成功大學水利及海洋工程學系博士論文,第12-16頁。 32. 陳榮河、楊式昌(1994),激發反水壓引致土石流之研究,中華民國地質學會八十三年年會暨學術研討會,第315-319頁。 33. 黃宏斌(1993),非飽和堆積層土石流發生之臨界角度與含水量之關係研究,中華水土保持學報,第24卷,第1期,第21-27頁。 34. 黃宏斌(1991),土石流之發生模式探討,中國農業工程學報,第37卷,第4期,第35-47頁。 35. 張永雙(2003),湖北省巴東縣桐木園山坡型泥石流的形成機理及預警指標,地質通報,第22卷10期,第833-838頁。 36. 張柏宇(2002),頭嵙山礫岩侵蝕形貌之研究-以臺灣中部三處個案為例,台灣大學地理系博士論文,第12-15頁。 37. 鄭凱文(2004),火炎山土石流地形特徵之研究,國立中興大學水土保持研究所碩士論文,第47-50頁。 38. 鄭乃元(2000),土石流材料破壞行為之研究,台灣大學土木工程系碩士論文,第5-26頁。 39. 鄭村益(1993),三義火炎山自然保留區崩塌地變遷之研究,國立中興大學水土保持學研究所碩士論文,第30~35頁。 40. 謝正倫(1991),土石流預警系統之研究,國立成功大學台南水工試驗所研究報告,No.130,第12~29頁。 41. 錢寧、萬兆惠等(1991),泥沙運動力學,科學出版社,第416-447頁。 42. 蘇苗彬、陳育志(2003),液化引致土石啟動的關係探討,中華水土保持學報,第34 卷第4 期,第381-388頁。 43. 鄭瑞昌、江永哲(1986),土石流發生特性之初步研究,中華水土保持學報,第17卷,第2期,第50-69頁。 44. 土屋 智、今泉文壽、石橋弘光(2002),台灣の921地震にともなう斜面崩壞の發生場としての特徵,1999年台灣の地震に伴って發生した山地災害の調查,第101-107頁。 45. 山下祐一、石川芳治、草野慎一(1992),土石流發生源の崩壞地の土質特性,新砂防,第178號,第19-25頁。 46. 山口伊佐夫(1985),防砂工程學,國立台灣大學森林系譯,第150-174頁。 47. 石川芳治,朝田瑞樹,杉江友介(2002),九九峰の災害斜面崩壞機構,1999年台灣の地震に伴って發生した山地災害の調查,第148-164頁。 48. 中筋章人、足立勝治、中山政一、清野雅雄、二宮男、大木俊治(1977),昭和50年仁淀川流域土砂災害と流態の特性,昭和52年度砂防研究概要集,第56-57頁。 49. 日本砂防學會(1991),土砂災害治理對策-扇狀地治理對策等(1),日本山海堂,第143-154頁。 50. 池谷浩(1980),土石流災害調查法,日本山海堂,第16-20頁。 51. 近藤觀慈、林 拙郎 (2002),地盤の特性と斜面の安定性解析,1999年台灣の地震に伴って發生した山地災害の調查,第260-273頁。 52. 沖村 孝、鳥居宣之、永井久德(1999),地震後の降雨にする山腹崩壞,地震に對する林地安定性山地の災害關する總合的研究,第63-76頁。 53. 武居有恆(1980),地すベり 崩壞 土石流,鹿島出版社,第37-50頁。 54. 海堀正博、佐恭二(1988),山腹崩壞土砂の運動中の摩擦係數に關する研究,新砂防,第158號,第3-10頁。 55. 高橋保(1977),土石流の發生と流動に關する研究,京大防災研究所年報,No.20(B2),第405-435頁。 56. 瀨尾克美、橫部幸欲(1978),土砂災害降雨之研究,新砂防,第108期,第14-18頁。 57. 蘆田和男、高橋保、道上正規(1985),河川土砂災害對策,森北出版株式會社,第55-148頁。 58. 蘆田和男、江頭進治、神矢弘(1984),斜面における土塊の滑動 停止機構に關する研究,京大防災研究所年報,No.27B-2,第1-10頁。 59. 蘆田和男、江頭進治(1983),山腹崩壞土の流動機構に關する研究,京大防災研究所年報,No.26B-2,第1-13頁。 60. Armmanini, A., and M. Michiue (1997), Recent Developments on Debris Flows, Department of civil Environmental Engineering University of Trent, Italy. 61. Bagnold, R. A. (1973), The nature of salutation and of bed-load transport in water. Proc., Royal Soc. of London, Ser. A332, pp.473-504. 62. Brunsden, D., and A. Grieve (2002), Spatial and temporal trends in upland erosion and sedimentation, SNH Commissioned report. 63. Brunsden, D., and D. B. Prior (1984), Slope instability, John Wiley and Sons, pp.175-177. 64. Brunsden, D. (1979), In Process in geomorphology, Edward Arnold Ltd., London, pp.130-186. 65. Caine, N. (1980),The rainfall intensity duration control shallow landslides and debris flow, Geografiska Annaler, Vol.62, pp.23-27. 66. Calcaterra, D., R. de Riso, and D. Di Martire (2004),Assessing shallow debris hazard in the Agnano Plain(Naples,Italy) using SINMAP, a physically bases slope-stability model, Landslide: evaluation and stabilization, Taylor & Francis Group, pp.177-183. 67. Cannon, S.H. and S.D. Ellen (1985), Rainfall conditions for abundant debris avalanches in San Francisco Bay Region California, California Geology, Vol.38, No12, pp.267-272. 68. Capart, H., and D. L. Young (2002), Development and preliminary valuation of a geomorphic flood routing framework, First international conference on debris-flow disaster mitigation strategy, pp. 152-172. 69. Cernia, J.N. (1982), Geotechnical Engineering, pp. 278-281. 70. Chen C.Y., Chen T.C., Yu F.C., and Hung F.Y. (2004), A landslide dam breach induced debris flow- a case study on downstream hazard areas delineation, Environmental Geology 47, pp. 91-101. 71. Chen, H., C. F. Lee, and Shen J. M. (2000), Mechanisms of rainfall-induced landslides in Hong Kong, Debris-flow hazard mitigation: mechanics, prediction, and assessment, U. S. Geological Survey, pp. 53-60. 72. Chen, C.L. (1987), Comprehensive review of debris flow modeling concepts in Japan,Debris flow/avalanches:process, recognition and mitigation, Reviewsin Engrg. Geol., VII, Geol. Soc of America, pp. 13-29. 73. Costa, J.E. (1984), Physical geomorphology of debris flow, Developments and applications of geomorphology, Springer-Verlag, pp. 268-317. 74. Coussot, P. (1997), Mudflow Rcheology and Dynamics, International Association for Hydraulic Research, pp.1-23. 75. Coussot, P., and M. Meunier (1996), Recognition, classification and mechanical description of debris flows, Earth-Science Review 40, pp.209-227. 76. Dai, F.C., C. F. Lee, J. Li, and Z. W. Xu (2001), Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong, Environmental Geology, Vol.40, No.3, pp. 381-391. 77. Dai, F.C., C. F. Lee, and S. J. Wang (1999), Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau island Hong Kong, Engineering Geology 51, pp.279-290. 78. Deganutti, A.M., L. Marchi, and M. Arattano (2000), Rainfall and debris-flow occurrence in the Moscardo basin (Italian Alps), Debris-flow hazard mitigation: mechanics, prediction, and assessment, U. S. Geological Survey, pp.67-72. 79. Dihau, R., D. Brunsden, L. Schrott, and M.L. Ibsen (1996), Landslide Recognition, Identification, Movement and Causes, Report No.1 of the European Commission Environment Programme Contract No.EV5V-CT94-0454,John Wiley & Sons, pp.149-211. 80. Fredinand, P. B., and J. J. Russell (1995), Vector Mechanics for Engineers Dynamics, McGraw-Hill, Inc, pp. 1149-1153. 81. Hayashi, J.N., and S. Self (1992), A comparision of pyroclastic flow and landslide mobility, J. Physic. Res. 97, pp. 9063-9071. 82. Hungr, O., G. C. Morgan, and R. Kellerhals (1984), Quantitative analysis of debris torrent hazards for design of remedial measures, Can. Geotech. J., Vol. 21, pp. 663-677. 83. Iverson, R.M., E.R. Mark, and G. L. Richard (1997), Debris-flow mobilization from landslides, Annu. Rev. Earth Planet. Sci, 25, pp.85-138. 84. Johnson, A.M. (1970), Physical processes in geology, Freeman, pp. 433-534. 85. Jomelli, V., D. Brunsden, C. Chochillon , and P. Pech (2002), Hillslope debris flows frequency since the beginning of the 20th century in the Massif des Ecrins (French Alps), APN and Eclipse of the National Scientific Research Centre and the IMFREX programme of the Ministry of Research. 86. Keefer, D. K., R. C. Wilson, R. K. Mark, E. E. Brabb, W. M. Brown Ⅲ, S. D. Ellen, E. L. Harp, G. F. Wieczorek, C. S. Alger, and R. S. Zatkin(1987), Real-time landslide warning during heavy rainfall, Science, Vol.238, pp.921-925. 87. Keefer, D.K. (1984), Landslides caused by earthquakes, Geological Society of America Bulletin, Vol.95, pp. 406-421. 88. Lavigne, F., and J. C. Thouret (2002),Sediment transportation and deposition by rain-triggered lahars at Merapi-Vocano ,Central Java, Indonesia, Geomorphology 49, pp.45-69. 89. Legros, F. (2002), The mobility of long-runout landslides, Engineering Geology 63, pp.301-331. 90. Lorente, A., S. Beguerua, J. C.Bathurst, and J. M. GarciaRuiz (2003), Debris flow characteristics and relationships in the Central Spanish Pyrenees, National Hazards and Earth System Sciences3, pp.683-692. 91. Lorente, A., S .Beguerua, and J. M. GarciaRuiz (2001), Factors explaining the spatial distribution of hillslope debris flows, a Case Study in the Flysch Sector of the Central Spanish Pyrenees, Mountain Research and Development, Vol 22, No1, pp. 32-39. 92. Ojeda-Moncayo, J., J. Locat, R. Couture, and S. Leroueil (2004), The magnitude of landslides: an overview, Landslide: evaluation and stabilization, Taylor & Francis Group, pp.379-383. 93. Olivares, L., and E. Damiano (2004), Post-failure mechanics of landslides: flowslides in pyroclastic soils, Landslide: evaluation and stabilization, Taylor & Francis Group, pp.1343-1354. 94. Parsons, A.J.(1988) , Hillslope Form, London and New York, Routledge. 95. Pirulli, M., C. Scavia, and O. Hungr (2004), Determination of rock avalanche run-out parameters through back analyses, Landslide: evaluation and stabilization, Taylor & Francis Group , pp.1361-1366. 96. Richard, M. L. (1997), The physic of debris flows, American Geophysical Union, pp. 245-296. 97. Selby, M J. (1995), Hillslope materials and processes, Oxford University press, pp. 106-120. 98. Sharma, R. H., and H. Nakagawa (2005), Shallow landslide modeling for heavy rainfall events, Annuals of Disaster Prevention Research Institution ,Kyoto Univ.,No48 B, pp.683-690. 99. Sitar, N., S. A. Anderson, and K. A. Johnson(1992), Conditions for initiation of rainfall – induced debris flow, Stability and performance of slopes and embankments: proceedings of a special conference at U.C. Berkeley, ASCE. 100. Sitar, N. and Anderson, S. A.(1990), Hydrologic condition leading to debris-flow Initiation, Canadian Geotechnical Journal, Vol. 27, pp. 789-801. 101. Sidle, R. C., A. J. Pearce, and C. L. O''Loughlin (1985), Hillslope stability and land use, American Geophysical Union, pp.19-20. 102. Takahashi, T.(1991), Debris flow, International Association for Hydraulic Research, International association for hydraulic researches hydrauliques, Balkema, pp.26-62. 103. Turner, A.K., and R. L. Schuster (1996), Landslides: Investigation and mitigation, Special report 247, National Academy, pp.44-69. 104. Van, S. H. (1999), Frequency of hillslope debris flows in the Bachelard valley (French Alps). In M. Panizza, M. Soldati., M. Bertacchini, W. Van Asch & S. Malmusi (eds), Programme in Geomorphology, pp.15-24. 105. Van, S. H. (1991), Frequency of hillslope debris flows in part of the French Alps. Bulletin of Geomorphology 19, pp.83-90. 106. VanDine, D.F. (1985), Debris flows and debris torrents in the Southern Canadian Cordillera, Canadian Geotechnical Journal, Vol.22, pp. 44-68. 107. Varnes, D.J. (1978), Slope movement: type and processes. , In landslides analysis and control (Eds R.L.Schuster and R.J.Krizek), Transp. Sep.Rep.176, pp.44-68. 108. Winter, M.G., F. Macgregor and L. Shackman (2005), Scottish road network landslides study, the Scottish Executive web site. http://www.scotland.gov.uk/Publications/2005/07/08131738/17395 109. Wieczorek, G. F. (1987), Effect of rainfall intensity and duration on debris flows in Central Santa Cruz Mountains, California, Flows/Avalanches: Process, Recognition and Mitigation, Geological Society of America, Reviews in Engineering Geology, Vol.7,pp.86-98. 110. Yu, F.C., T.C. Chen, M. L. Lin, C.Y. Chen and W. H.Yu (2006), Landslides and Rainfall Characteristics Analysis in Taipei City during the Typhoon Nari event, Natural Hazards 37,Issue 1-2, pp.153-167. 111. Zhou, C.H, C. F. Lee, J. Li, and Z. W. Xu (2002), On the spatial relationship between Landslides and causative factors on Lantau Island, Hong Kong, Geomorphology, Vol.43, pp.197-207.
摘要: 
Debris flows were defined that the none compaction sediments or the weathering rocks and rocks debris in slope, because of the torrential rain or runoff influence, had arrived saturated condition after water content was increase, the mixure with gravel and soil had the obvious liquefied phenomenon, under coordination of the terrain slope, impelled to form flowing. Occurrence analysis on initiation of debris flow, the slope failure caused landslide, which produced movement with the contact of upstream runoff, made the landslide material fluidize, and form debris flow, some scholars call the slope-type debris flow. For discussing the occurrence environment of slope-type debris flow, suppose the debris flow mobilized from landslides, in fact, the domestic and foreign correlations research, the initial mechanism still limited to understand. In order to analysis the initiation mechanism of debris flow, in the past many scholars that apply to the theorical or the experimental analysis carries on debris flow research, by means of field data collection with hydrology and topograpy, established the experience and the semiempirical relationship on initial mechanism.
This paper was considered initial mechanism of debris flow, by the experience and the semiempirical formula, derived physico-mathematics formula. And the description of characteristics replaced by qualitative and statistical explanation and for field investigation. Therefore this paper discussed the occurrence characteristics and initial mechanism of debris flow along gravel slope.
This paper contribution may states as follows:
1. Forcus on gravel slope which was easy to form debris flow, and drafted the operation flowchart included field investigation, GIS management, statistics and laboratory experiment.
2. For the feature of debris flow, according to areophoto judgement, field investigation, to analysis the topographic characteristics along gravel slope.And confirmed the difference of sharp and space distribution with landslide, slope type and channel type debris flow.
3. Using laboratory experiment to adjust discharge runoff upstream, water content in earth, the slope and the grain size composition, to simulate havior of debris flow from landslide, in order to realize initial process of debris flow along gravel slope.
4. Combining revelant theory, field investigation, the statistical analysis, the laboratory experiment, analysis initial mechanism of debris flow along gravel slope.
This capital research mothod, first was collection that happened case analysis in Taiwan, and research area designation; second was theory establishment about debris flow from landslide; third was the research area investigation, analysising the occurrence characteristics about debirs flow along gravel slope; Finally the confirmation of occurrence characteristics from experiment, establishment and revision initial mechanism of debris flow along gravel slope.
According to the above research mothod, after carries on the analysis and the discussion below, obtains the conclusion as follows:
1. Because water permeability was good in conglomerate formation, the runoff was easy to form seepage into the landslide block base, has the destruction to the landslide block. In addition to the higher porosity in conglomerate formation, had supply enough space to cause flowing with the water intensive mixing, and the pattern of slope had converge concave sharp, made landsliding mass in the short distance to form debris flow.
2. The debris flow occurs depend on critical slope of slopeland, is related with soil and water depth, Flow Froude number and Grain Froude number, the debris flow has the critical slope value in 26~40%.
3. If the correlation parameters with critical slope for doposit block in channel, used for doposit block in slope, it is considerd the effect of seepage force to doposit block, then must increase correction coefficient A0, its value approximately is 0.6.

4. The initiation mechanism on debris flow form landsliding mass, was considerd that runoff upstream enters landsliding mass, formed the liquefied layer to the bottom of landsliding mass, when liquefied layer was flowing, created the above landsliding mass destruction, the relations with critical slope form landsliding mass to flow, and correlation parameters indicate:

5. If the slope is bigger than 15, the distance of sliding landslide mass is over thickness of the landslide mass 4.5 time of above the distance, also has the sufficient water volume supply, the landslide mass has liquefied phenomenon to form debris flow usually.

土石流為斜面上未固結之沉積物或風化之礫石、岩屑等,因豪雨或逕流集中的影響,在土體含水量到達飽和狀態下,土壤形成明顯之流體化現象,當地形坡度配合達到發生流動的條件,而後形成流動之現象。在土石流發生的原因中,邊坡崩塌造成土石崩滑,所產生的動力與後方逕流接觸時,因崩塌土體含水量增加,使土石沿坡面發生流體化,形成土石流,有些學者稱之坡面型土石流。至於坡面型土石流發生的環境,崩滑土體於坡面上能否轉變成流動型態,及其形成流體化的過程。實際上國內外之相關研究,其瞭解仍相當有限,為能更瞭解土石流之發生機制與發生臨界條件,過去有很多學者透過理論或實驗的分析來進行土石流發生之研究,或藉由降雨及現場地文資料的收集分析,來建立土石流發生條件之經驗及半經驗關係式。
如何將土石流發生條件,由經驗及半經驗關係式,推導成具有數理基礎公式。或將野外調查得到土石流定性描述,利用統計方法取得定量的特徵,為本文主要研究的起因。因此本文的研究目的,係以探討礫石坡面土石流之特性與發生機制。
本論文的貢獻可列述如下:
1. 針對易形成坡面型土石流環境之礫石坡面著手,擬訂一套礫石坡面土石流野外調查、地理資訊系統、資料統計與試驗分析之調查作業流程。
2. 針對土石流之特性,藉航照判釋與現地調查,分析礫石坡面土石流之地形特性,以確認坡面型土石流與崩塌、溪流型土石流形貌與分布區位間之差異。
3. 利用室內試驗,調整後方逕流量、土體含水量、坡度與粒徑組成等條件,模擬邊坡土體崩塌產生坡面流動的過程,以期對礫石坡面引發土石流有更深一層的暸解。
4. 結合相關理論、野外調查、統計分析、室內試驗,綜合分析礫石坡面土石流發生之機制。
本文主要的研究方法,首先為資料蒐集,進行礫石坡面土石流歷年發生案例分析,與研究區選定;其次建立礫石坡面崩塌形成土石流之土體破壞流體化理論;然後,配合研究區現場調查,分析發生特性,及坡面型土石流與崩塌、溪流型土石流形貌與分布區位間之差異;最後結合室內試驗資料的驗證,建立並修正礫石坡面土石流發生之機制。
根據以上的研究方法,進行分析與討論後,得到以下的結論:
1. 礫石層本身因透水性良好,地表逕流容易滲透至崩塌土體成為地下滲流,容易對土體產生破壞;加上有較大的孔隙率,土體內有足夠的空間使其與水充分混合流動;再加上多為內聚凸坡的坡型,使沖蝕或崩塌土體在較短距離內即可形成土石流。
2. 土石流發生與否可藉由臨界坡度評估決定,並同時以土體深度與逕流水深比值、水流福祿數、與顆粒福祿數來決定。
3. 溪床中堆積土體臨界坡度關係式,若運用至坡面崩積土體臨界坡度關係式,可考慮滲流力影響,並增加一地形修正係數A0,其值約為0.6。

4. 滑動中土塊發生流動的機制,為逕流進入滑動土體中,於底部形成液化層,液化層的流動,造成上方土體的破壞,滑動中土塊臨界坡度關係式可以下式表示:

5. 若坡度大於15°,土塊滑動距離超過土塊厚度4.5倍以上的距離,且有充足之水量供應,土體有發生液化現象而形成礫石坡面土石流之可能。
URI: http://hdl.handle.net/11455/34508
其他識別: U0005-1108200713512200
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.