Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34543
標題: 以「天頂及法線變異量測法」分析裸露坡地地形變化之研究
A Study on Uncovered Slope Terrain Change Using Zenith and Normal Variation Measurement Technique
作者: Wu, Tsung-Chiang
吳宗江
關鍵字: 最或是地形;the most probable terrainthe most probable terrain;地形點雲資料;天頂變異量測法;法線變異量測法;terrain point cloud data;Zenith Variation Measurement Method;Normal Variation Measurement Method
出版社: 水土保持學系所
引用: 一、 中文部份 (一) 圖書 1. 力弘科技股份有限公司,2003,3D雷射掃描專業技術手冊。 2. 尹鍾奇,1984,「最小自乘法平差」,國彰出版社。 3. 宋國城,2003,「臺灣西南部旗山斷層之活動性監測研究」,國科會計畫報告。 4. 張忠俊,2007,「山坡地開發實務」,高立圖書出版社。 5. 廖揚清,1988,「平差與統計」,供學出版社。 (二) 期刊論文 1. 何宗融,2000,「高精度GPS應用於大型儲槽及區域地層變位之研究」,國立交通大學土木工程學系,碩士論文。 2. 粘惎非,2005,「反射標與距離檢定對三維雷射掃瞄儀精度影響評估-以Mensi GS200為例」,國立交通大學土木工程學系,碩士論文。 3. 張家興,2000,「逆向工程技術研究-點資料的處理和曲面重建」,國立台灣大學機械工程學系,碩士論文。. 4. 曾義星、史天元,2003,「三維雷射掃描儀-新ㄧ代測量利器」,科學發展365期,pp.16-21。 5. 黃偉城,2004,「利用地面三維雷射掃瞄儀研究斷層變形之可行性-2003年Mw6.5台東成功地震池上斷層之同震及震後變形」,國立成功大學地球科學研究所,碩士論文。 6. 黃中偉,1998,「應用不規則三角網計算水庫容量」,國立交通大學土木工程學系,博士論文。 7. 黃文杰,2004,「利用3D雷射掃描儀進行油槽形變監測之研究」,國立中興大學土木工程學系,碩士論文。 8. 郭隆晨、余水倍,2001,「高精度GPS在地球科學上之應用」,臺灣之活動斷層與地震災害研討會,台北,pp.63-82。 9. 郭朗哲、曾義星、史天元,2003,「地面雷射掃描儀測量作業問題探討」,第22屆測量學術暨應用研討會。 10. 張明政,2003,「三維雷射掃瞄技術應用於戶地測量之研究-以建物為例」,國立中興大學土木工程學系,碩士論文。 11. 張國鎮,2003,「光纖感測監測之應用發展」,光纖感測監測之應用與發展研討會,台北,pp.1-20。 12. 賴志恆,2003,「雷射掃描點雲資料八分樹結構化之研究」,國立成功大學測量工程學系,碩士論文。 13. 許海龍、王偉群、陳立邦,2006,「應用3D雷射掃瞄技術於崩塌地地層滑動監測」,岩盤工程研討會論文集,台南,pp.377-386。 14. 葉大綱、胡毓盛、丁曉利、陳春盛,2007,「一機多天線GPS形變系統應用於邊坡滑動之監測」,第五屆海峽兩岸測繪發展研討會,新竹。(已接受)。 15. 簡顯光,1984,「近景攝影測量在古蹟維護上之應用」,國立成功大學航測研究所,台南,碩士論文。 16. 蘇苗彬、劉鍵偉,1992,「應用GPS作地滑地地表變位長期監測之可行性研究」,國立中興大學土木工程學系,台中,碩士論文。 17. 蘇苗彬、徐登文、壽克堅,2003,「梨山地區地層滑動整治計畫圖表與解說與彙編」,行政院農委會水土保持局。 18. 蘇苗彬、廖建鑫,2006,「使用 TDR 量測梨山地層滑動面之成果分析」,岩盤工程研討會論文集,台南,pp.357-366。 19. 蕭國鑫、劉進金、曾義星、游明芳,2005,「三維雷射掃瞄應用於河道地形變化偵測」,第24屆測量學術及應用研討會論文集,pp.167-176。 20. 劉燈烈,2004,「地面光達點雲資料的平差結合與影像敷貼」,國立成功大學測量及空間資訊學系,碩士論文。 (三) 網路資源 1. http://www.leadertek.com.tw (四) 其他 1. 內政部營建署市鄉規劃局都市計畫數值地形測量督核及抽驗辦法 2. 苗栗縣政府,2007,「苗栗縣頭份鎮暨竹南鎮都市計劃區數值地形測量作業計畫」 二、 西文部分 (一)Journal Articles 1. Boehler, W., G. Heinz, and A. Marbs, 2001, "The Potential of Non-contact Close Range Laser Scanners for Cultural Heritage Recording", Proceedings of CIPA International Symposium, Potsdam, Germany 2. Boehler, W. and A. Marbs, 2002, "3D Scanning Instruments", CIPA, Heritage Documentation - International Workshop on Scanning for Cultural Heritage Recording – Corfu, Greece 3. Gordon, S., D. Lichti and M. Stewart, 2001, "Application of a High-resolution Ground-based Laser Scanner for Deformation Measurements," The 10th FIG International Symposium on Deformation Measurement, Orange, California, USA, pp.23~32. 4. Lichti, D. D. and B. R. Harvey, 2002, "The Effects of Reflecting Surface Material Properties on Time-of-Flight Laser Scanner Measurement" Symposium on Geospatial Theory, Processing and Application, Ottawa 5. Nagihara, S., J. Hargis, R. Goss, J. Wright and G. Hill, 2002, "Sub-Centimeter-Resolution Digital Topography and Surface Lithology Models Obtained from 3-D Laser Scanner Survey in the South prong Canyon," Texas Panhandle, CSM-ASPRS Conference and Technology Exhibition, XXII.FIG, Washington. 6. Ono, N., N. Tonoko and K. Sato, 2000, "A Case Study on the Landslide by the 3D Laser Mirroe Scanner", International Archives of Photogrammetry and Remote Sensing. Vol.XXXIII, Part B5, Amsterdam 2000, pp.593-598 7. Stafne, M. A., L. D. Mitchell and R. L. West, 2000, "Positional Calibration of Galvanometric Scanner Used in Laser Doppler Vibrometers", Measurement, vol. 28 , pp.47-59 8. Vílchez, J. A., S. Sevilla, H. Montiel and J. Casal, 1995, "Historical Analysis ofAccidents in Chemical Plants and in the Transportation of Hazardous Materials", J. Loss Prev. Process Ind., pp.87-P96 9. Wehr, A. and U. Lohr, 1999, "Airborne Laser Scanning - An Introduction and Overview", ISPRS Journal of Photogrammetry & Remote Sensing, vol.54, pp.68-82. 10. Wu, Tsung-Chiang, Zheng-Yi Feng and Wen-Fu Chen, 2006, "Application of 3D Laser Scanning in Monitoring of a Barren Slope", Preceedings of the 1st International Geotechnical Engineering Conference, GEO-SINGAPORE, Singapore, pp.171-184. 11. Wu, Tsung-Chiang, Wen-Fu Chen and Zheng-Yi Feng, 2007, "Application of laser scanning and geoelectric resistivity in monitoring of a rebuilt slope", 2nd Alexander von Humboldt International conference, Lima.(poster) (二)Electronic Resources 1. http://www.leica.com 2. http://www.trimble.com 3. http://www.reigl.com 4. http://www.konica-minolta.com.hk 5. http://www.dibit-scanner.at
摘要: 
本研究利用地面光達非接觸式掃描以取得地表高密度與精度三維坐標值之特性,來擷取裸露坡地之地形資料,提出最接近真實裸露坡地之「最或是地形」的概念,並建立地面光達掃描距離、掃描密度與地形誤差之間的函數關係,擬定地面光達獲取自訂地形圖比例尺精度條件之外業作業模式,製作符合自訂地形精度之「最或是地形」資料。研究顯示傳統測量在裸露崩塌地所得到之裸露坡地地形資料之精度與真實地形之相似度約僅66.5%,不適合作為全面性地形變化偵測之用;而本研究由地面光達所測得之「最或是地形」資料,因精度與密度都高,適合作為裸露坡地地形變化分析之資料來源。經由試驗所獲得之作業模式應用於野外測試,發現不同掃描測站位置對於比對分析結果影響甚大,且掃描距離及掃描密度的規範亦會影響比對分析之結果。本研究歸納出以固定站掃描作業為原則之裸露坡地地形變化偵測的作業規範,可提供應用地面光達為工具之地形變化監控有效的作業模式。
本研究依據地面光達取得地形點雲資料高密度之點與點間的空間關係,建立「天頂變異量測法」與「法線變異量測法」比對分析之模式。經以同一裸露土體進行降雨實驗,以三維雷射掃描技術取得降雨前後裸露土壤表面三維之點雲資料,再以上述兩種比對分析模式進行地形變化偵測。證實其中「天頂變異量測法」於偵測土體在降雨前後之地形天頂方向之變異量與土方計算模式之地形高程變化量之方向相同,可精確計算出土表淘刷與堆積處之位置、範圍及土方量變化,但對降雨前後之地形變化分析,因其不符地形單元坡面不同方向的原則,而有高估的現象;而「法線變異量測法」係針對地形單元各自法線方向變異量偵測所發展的分析模式,研究顯示對於降雨前後地形變化之偵測結果較為合理,但對其土方量之估算則尚難有效獲得。「天頂變異量測法」適合於地形產生大規模變化實際計算相關土方變化之相關量化資訊,對於平日未有外力干擾之地形變化偵測仍以「法線變異量測法」較為適合。但若將兩種方法整合成「天頂及法線變異量測法」,則可使彼此之適用性充分發揮而減少其缺點。對於一個被判定為敏感之裸露坡地,可先採「法線變異量測法」紀錄地形之變化,若遇發生災害而使地形產生變化,則可應用「天頂變異量測法」進行災害前後之地形變化量測,待裸露坡地趨於穩定之後,再又使用「法線變異量測法」紀錄與分析其後續的地形變化,即可對裸露坡地之地形變化做完整的監控與紀錄。

This research got terrain information by scanning surface of uncovered slope to get high density and precision 3-D coordinates with Ground Lidar without contacting and addressed a new idea "the most probable terrain" by surveying the closest real terrain and established a function relationship of scanning distance, density and terrain error for building Ground Lidar field work procedure for a decided terrain scale precision and finished a self-making “the most probable terrain” information with the decided terrain precision. It showed that the result of traditional surveying on uncovered slope terrain was about 66.5% similar to the real terrain and it is not suitable for detecting the terrain change. On contrarily, "the most probable terrain", with a character of high precision and density which derived by scanning with Ground Lidar of this research, It is suitable to afford for analyzing the terrain change. By using the operation model that was derived from the indoor experiment to test it on field, it was found that the position of Scanning site affected the contrast analysis result seriously and so did the criteria of scanning range and density. Therefore, the criteria of terrain change detection for uncovered slope land that was derived by this research for fixed scanning site can be used availably for a model to detect the terrain change with Ground Lidar.
According to the relationship between points that was derived from the terrain point cloud data by using the Ground Lidar scanned data for analysis, this research erected a contrast and analysis model with "Zenith Variation Measurement Method" and "Normal Variation Measurement Method". With 3D cloud points of soil surface got by scanning with 3D Ground Lidar to a same soil model after precipitating experiment and then detected the terrain change of soil surface with the two above analysis methods. It was proved that the variation of zenith direction by "Zenith Variation Measurement Method" was the same with altitude variation direction of earthworks estimation, so it could be used to calculate the variation of the position of erosion and deposition, range and earthwork precisely. But the estimated result was larger than the terrain change before and after precipitating experiment for being not correspondent with the principle of different aspect for the terrain unit slope. On the other hands, "Normal Variation Measurement Method" was developed for detecting normal direction variation of each terrain unit so it is reasonable for detecting terrain change but can not calculate earthwork change availably up right now. Summary, "Normal Variation Measurement Method" was suitable to extensive terrain change for calculating earthworks change and "Normal Variation Measurement Method" was suitable to detecting terrain change with no broken by external natural force. If the two methods of the research are integrated to be "Zenith and Normal Variation Measurement method", the integrate model should be more available and can reduce its weak points. When an uncovered slope land is interpreted as to be sensitive, we can use "Normal variation measurement" firstly to record its terrain change and when larger terrain change occur by extra natural force, we can use "Zenith Variation Measurement Method" to measure the terrain change. After the terrain becomes to be stable, we can then use "Normal Variation Measurement Method" again to do the follow-up terrain change record and analysis. So, we can make an effective monitoring and recording for an uncovered slope land.
URI: http://hdl.handle.net/11455/34543
其他識別: U0005-2208200714022200
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.