Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34560
標題: 土壤水分特性曲線與不飽和水力傳導度之研究
Study of Soil Water Characteristic curve and Unsaturated Hydraulic Conductivity
作者: 張舒婷
Chang, Shu-Ting
關鍵字: Hydraulic conductivity;水力傳導度;Water characteristic curve;TDR;van Genuchten Model;水分特性曲線;TDR;van Genuchten Model
出版社: 水土保持學系所
引用: (一)圖書 1. 林俐玲,1996,土壤物理學實習手冊,國立中興大學。 2. 萬鑫森 譯,1987,基礎土壤物理學,國立編譯館主編,茂昌圖書有限公司發行。 3. Cassell, D.K., and A. Klute. 1986. Water potential: Tensiometry. p. 563-596. In A. Klute (ed.) Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd ed. Agronomy Monograph no. 9. ASA and SSSA, Madison, WI, USA. 4. Durner, W. 1992. Predicting the unsaturated hydraulic conductivity using multi-porosity water retention curves. p. 185-202. In M.Th. van Genuchten et al. (ed.) Indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, CA. 5. Jarvis, N.J., I. Messing, and M.H. Larsson. 1999. Measurement and prediction of near-saturated hydraulic conductivity for use in dualporosity models. p. 839-850. In M.Th. van Genuchten et al. (ed.) Characterization and measurement of the hydraulic properties of unsaturated porous media Part2. University of California, Riverside, CA. 6. Klute, A., and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. p. 687-734. In A. Klute (ed.) Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd ed. Agronomy Monograph no. 9. ASA and SSSA, Madison, WI, USA. 7. Schaap , M.G., F. J. Leij., and M.Th. van Genuchten. 1999. A bootstrap-neural network approach to predict soil hydraulic parameters. p.1237-1250. In M.Th. van Genuchten et al. (ed.) Proc. Intl. Workshop, Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, Riverside, CA. 22-24 Oct. 1997. University of California, Riverside. (二)期刊論文 1. 李振誥、黃柏清、葉義章,2001,八種持水曲線模式對不同土壤適用性之評比,中國土木水利工程學刊,13:657-665。 2. 何國謙,2005,植物覆蓋和土性質與蚯蚓活動關係之研究,國立中興大學水土保持學系碩士論文。 3. 林正錺、蘇銘燦,1986,多孔體不飽和導水度之理論計算,中國農業化學會誌,24:72-79。 4. 林明義,2000,九份二山崩塌地土壤水份特性之研究,國立中興大學水土保持學系碩士論文。 5. 林軍豪,2006,地表植生類型對土壤水分移動影響之研究,國立中興大學水土保持學系碩士論文。 6. 陳信宏,2006,以Arya and Paris Model 推估土壤水分特性之研究,國立中興大學水土保持學系碩士論文。 7. Ahuja, L.R., and D. Swartzendruber. 1972. An improved form of soil-water diffusivity function. Soil Sci Soc. Am. Proc. 36:9-14. 8. Arya, L.M., and J.F. Paris. 1981. A physico-empirical model to predict soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45:1023-1030. 9. Averianov, S.F. 1949. Dependence of water conductivity of soils upon the air content. Proceedings of Academy of Sciences of USSR. 69:141-145. 10. Bagarello, V., M. Iovino, and G. Tusa. 2000. Factors affecting measurement of the near-saturated soil hydraulic conductivity. Soil Sci. Soc. Am. J. 64:1203-1210. 11. Brooks, R.H., and A.T. Corey. 1964. Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. Am. Soc. Civ. Eng. 92:61-88. 12. Brooks, R.H., and A.T. Corey. 1966. Hydraulic properties of porous media affecting fluid flow. Proc. ASCE J. Irrig. Drain. Div. 92:61-88. 13. Burdine, N.T. 1953. Relative permeability calculation from pore size distribution data. Trans. AIME 198:71-77. 14. Campbell, G. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 142:311-314. 15. Childs, E.C., and N. Collis-George. 1950. The permeability of porous materials. Proc. R. Soc. Ser. A 201:392-405. 16. Chow, T.L. 1977.Fritted glass bead materials as tensiometers and tention plates. Soil Sci. Soc Am. J. 41:19-22. 17. Elrik, D.E., and D.H. Bowman. 1964. Note on an improved apparatus for soil moisture flow measurements. Soil Sci. Soc. Am. Proc. 28:450-451. 18. Endelman. F.J., G.E.P. Box, J.R. Boyle, R.R. Hughes, D.R. Keeney, M.L. Northrup, and P.G. Saffigna. 1974. Themathematical modeling of soil-water-nitrogen phenomena. EDFB-IBP-74-8. Oak Ridge National Laboratory, Oak Ridge, Tenn. 19. Fatt, I., and H. Dykstra. 1951. Relative permeability studies. Trans AIME 192:249-256. 20. Gardner, W., O.W. Israelsen, N.E. Edlefsen, and D. Clyde. 1992. The capillary potential function and its relation to irrigation practice. (Abstract) Phys. Rev. 20:196. 21. Gardner, W.R. 1956. Representation of soil aggregate-size distribution by a logarithmic normal distribution. Soil Sci. Soc. Am. Proc. 20:151-153. 22. Gardner, W.R. 1958. Some steady state solutions of the unsaturated moisture flow equation with applications to evaporation hrom a water table. Soil Sci. 85:228-232. 23. Gardner, W.R., and M.S. Mayhugh. 1958. Solution and tests of the diffusion equation for the movement of water in soil. Soil Sci. Am. Proc. 22:197-201. 24. Gerke, H.H., and M.Th. van Genuchten. 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29:305-319. 25. Haines, W.B. 1927. Studies in the physical properties of soils: IV. A further contribution on the theory of capillary phenomena in the soil. J. Agric. Res. (Cambridge) 17:264-290. 26. Haverkamp, R., M. Vauclin, J. Touma, P.J. Wierenga, and G. Vachaud. 1977. A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. J. 41:285-294. 27. Heimovaara, T.J., and W. Bouten. 1990. A computer-controlled 36-channel time domain reflectometry system for monitoring soil water contents. Water Resour. Res. 26:2311-2316. 28. Hillel, D., and W.R. Gardner. 1970. Measurement of unsaturated conductivity and diffusivity by infiltration through an impeding layer. Soil Sci. 109:149-153. 29. Jarvis, N.J., and I. Messing. 1995. Near-saturated hydraulic conductivity soils of contrasting texture measured by tension infiltrometers. Soil Sci. Soc. Am. J. 59:27-34. 30. Keng, J.C.W., and C.S. Lin. 1982. A tow-line Approximation of hydraulic conductivity for structured soils. Can. Agric. Eng. 24:77-80. 31. Leibenzon, L.S. 1947. Flow of natural liquids and gases in porous medium. Gostekhizdat. Moscow. 32. Livingston, B.E. 1908. A method for controlling plant moisture. Plant World 11:39-40. 33. Livingston, B.E. 1918. Porous clay cones for the auto-irrigation of potted plants. Plant Word 21:202-208. 34. Livingston, B.E., and L.A. Hawkins. 1915. The water relation between plant and soil. p. 3-48 Publ. 204. Carnegie Inst., Washington, DC. 35. Luckner, L., M.Th. van Genuchten, and D.R. Nielsen. 1989. A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25:2187-2193. 36. Marshal, T.J., J.W. Holmes, and C.W. Rose. 1996. Soil Physics. Cambrige Univ. Press, Melbourne, Australia. 37. Meadows, D. G., M. H. Young, and E. V. McDonald. 2005. A laboratory method for determining the unsaturated hydraulic properties. Soil Sci. Soc. Am. J. 69:807-815. 38. Miller, E.E., and R.D. Miller. 1956. Physical theory for capillary flow phenomena. J. Appl. Phys. 27:324-332. 39. Moore, R.E. 1939. Water conduction from shallow water tables. Hilgardia 12:383-426. 40. Mualem, Y. 1974. A conceptual model of hystersis. Water Resour. Res. 10:514-520. 41. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522. 42. Nielsen, D.R., and R.E. Phillips. 1958. Small fritted glass bead plates for determination of moisture retention. Soil Sci Soc. Am. Proc. 22:574-575. 43. Oliviera, I.B., A.H. Demond, and A. Salehzadeh. 1996. Packing of sands for the production of homogenous porous media. Soil Sci. Soc. Am. J. 60:49-53. 44. Or, D. 2001. Who invented the tensiometer? Soil Sci. Soc. Am. J. 65:1-3. 45. Poulsen, T. G., P. Moldrup, B. V. Iversen, and O. H. Jacobsen. 2002. Three-region campbell model for unsaturated hydraulic conductivity in undisturbed soils. Soil Sci. Soc. Am. J. 66:744-752. 46. Richard, G., J. F. Sillon, and O. Marloie. 2001. Comparison of inverse and direct evaporation methods for estimating soil hydraulic properties under different tillage practices. Soil Sci. Soc. Am. J. 65:215-224. 47. Richards, L.A. 1928. The usefulness of capillary potential to soil moisture and plant investigators. J. Agric. Res. (Cambridge) 37:719-742. 48. Richards, L.A. 1931. Capillary conduction of liquids in porous mediums. Physics 1:318-333. 49. Richards, L.A., and D.C. Moore. 1952. Influence of capillary conductivity and depth of wetting on moisture retention in soil. Trans. Am. Geophys. Union 33:531-540. 50. Ross, P.J., and K.R.J. Smettem. 1993. Describing soil hydraulic properties with sums of simple functions. Soil Sci. Soc. Am. J. 57:26-29. 51. Russo, D., and E. Bresler. 1980. Field determinations of soil hydraulic properties for statistical analysis. Soil Sci. Soc. Am. J. 44:682-687. 52. Schaap, M.G. and F. J. Leij. 2000. Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten Model. Soil Sci. Soc. Am. J. 64:843–851. 53. Schuh, W.M., and R.L. Cline. 1990. Effect of soil properties on unsaturated hydraulic conductivity pore-interaction factors. Soil. Sci. Soc. Am. J. 54:1509-1519. 54. Topp, G.C., and E. E. Miller. 1966. Hystersis moisture characteristics and hydraulic conductivities for glass-bead media. Soil Sci. Soc. Am. Proc. 30:156-162. 55. Topp, G. C., J. L. Davis, and A. P. Annan. 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res. 16:574-582. 56. Topp, G. C., J. L. Davis, and A. P. Annan. 1982a. Electromagnetic determination of soil water content using TDR. I. Application to wetting fronts and steep gradients, Soil. Sci. Soc. Am. J. 46:672-678. 57. Topp, G. C., J. L. Davis, and A. P. Annan. 1982a. Electromagnetic determination of soil water content using TDR. II. Evaluation of installation and configuration of parallel transmission lines. Soil. Sci. Soc. Am. J. 46:678-684. 58. van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898. 59. van Genuchten, M.Th., and D.R. Nielsen. 1985. On describing and predicting the hydraulic properties of unsaturated soils. Ann. Geophysicae 3:615-628. 60. Vereecken, H. 1995. Estimating the unsaturated hydraulic conductivity from theoretical models using simple soil properties. Geoderma 65:81-92. 61. Wendroth, O., W. Ehlers, J. W. Hopmans, H. Kage, J. Halbertsma, and J. H. M. Wösten. 1993. Reevaluation of the evaporation methold for determining hydraulic functions in unsaturated soils. Soil Sci. Soc. Am. J. 57:1436-1443. 62. Wilson, G.V., P.M. Jardine, and J.P. Gwo. 1992. Nodeling the properties of a multiregion soil. Soil. Sci. Soc. Am. J. 56:1731-1737. 63. Wind, G.P. 1955. Afield experiment concerning capillary rise of moisture in a heavy clay soil, Neth. J. Agr. Sci. 3:60-69. 64. Wösten, J.H.M., P.A. Finke, and M.J.W. Jansen. 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227-237. 65. Yates, S.R., M.Th. van Genuchten, A.W. Warrick, and F.J. Leij. 1992. Analysis of measured, predicted, and estimated hydraulic conductivity using the RETC computer program. Soil. Sci. Soc. Am. J. 56:347-354. 66. Youngs, E.G. 1964. An infiltration method of measuring the hydraulic conductivity of unsaturated porous materials. Soil Sci. 109:307-311. 67. Zegelin, S.J., I. White, and D.R. Jenkins. 1989. Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry. Water Resour. Res. 25:2367-2376. (三)電子資源 1. GOSA Scientific Software (http://www.bio-log.biz/index.php)
摘要: 
本研究設置水力傳導度室內實驗系統,配合土壤水分特性曲線壓力鍋排水法,得到三種不同土壤質地(砂質壤土、坋質壤土、壤土)之水分特性曲線及不飽和水力傳導度後,使用GOSA軟體擬合van Genuchten Model求得水力傳導度參數,並將擬合所得之傳導度作為室內實驗結果之驗證,以瞭解本研究設置之實驗系統是否足以取代繁雜費時的壓力鍋實驗,並探討在不同質地土壤下van Genuchten Model之適用參數。
本研究設置之實驗系統除可配合真空抽氣機進行排水實驗,亦可進行入滲實驗,並可透過透明的壓克力環,清楚地觀測濕鋒的變化情形。在水分流動的過程中可並藉由張力計與TDR的及時數據讀取而充分掌握實驗土柱之情況。此室內實驗系統出流口設置之流束測定瓶可觀測隨時間變化之流量,實為簡便且多功能之實驗系統。
研究結果顯示,以此室內實驗系統作排水曲線實驗,粘質壤土之排水曲線最佳,其次為砂質壤土,壤土則較不佳,此結果乃受實驗時間與土壤孔隙大小影響;水力傳導度實驗結果,粘質壤土實驗結果最佳,其次為壤土,較差為砂質壤土,其實驗結果深受土壤孔隙大小影響。
本研究中壓力鍋排水所得到水分特性曲線經GOSA軟體擬合vG Model後,得到砂質壤土之α=0.00194、n=2.455;壤土之α=0.00168、n=2.695;粘質壤土之α=0.00137、n=3.151。α值隨砂含量增加而有增加之趨勢。

The experimental system of hydraulic conductivity in the laboratory were setup, and the water characteristic curves were measured by pressure plate. Water characteristic curves and unsaturated hydraulic conductivity of different soil texture (sandy loam, clayey loam, loam) were obtained. The parameters of van Genuchten Model were obtained by curve fitting technique and then to calculate hydraulic conductivity. In order to understand whether this experiment could substitute for the pressure plate, and discusses the usable parameter of these three soils.
The result shows that our experiment can obtain the best water characteristic curve in the clayey loam, next is the sandy loam, latter is the loam. The result of the unsaturated conductivity experiment shows that the most correct experiment is in the clayey loam, next is the loam, latter is the sandy loam.
The parameters of the van Genuchten Model are α=0.00194, n=2.455; α=0.00168, n=2.695; α=0.00137, n=3.151 for sandy loam, loam and clayey loam respectively in this study.
URI: http://hdl.handle.net/11455/34560
其他識別: U0005-2507200713524900
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.