Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34574
標題: 連結式護甲墊工法之試驗研究
Flume Experiment of Articulated Armor-Layer System Methods
作者: Wang, Shi-Hao
王士豪
關鍵字: light-shielding rate;光遮蔽率;anti-erosion efficiency;articulated armor-layer;score hole;抗沖蝕效率;護甲墊;沖刷坑
出版社: 水土保持學系所
引用: 1. 王瑞香(2005),「生態學-科學與社會之間的橋樑」,國立編譯館。 2. 吳明峰(2005),「石塊之覆蓋率及嵌入對紋溝間土壤沖蝕影響之研究」,國立台灣大學生物環境系統工程學研究所博士論文。 3. 吳金洲(1990),「堰壩溢流水舌對下游河床沖刷之研究」,私立逢甲大學土木及水利工程研究所碩士論文。 4. 吳嘉俊、盧光輝、林俐玲(1995),「土壤流失量估算手冊」,行政院農業委員會。 5. 宋爾寧(1998),「帶工法對投潭水流行為及沖刷特性之影響」,國立中興大學土木工程研究所碩士論文。 6. 林呈、褚炳麟(2000),「橋基跌水或水躍沖刷防治設計指引」,財團法人中興工程顧問社專案研究報告。 7. 林信輝(2000),「水土保持植生工程」,高立圖書有限公司。 8. 林俊岳(2006),「人造被覆資材對土壤沖蝕防治及植生復育成效之研究」,國立中興大學水土保持學系研究所碩士論文。 9. 周憲德、李祈宏(2000),「砂礫河床之跌水沖刷分析」,第十一屆水利工程研討會,台灣大學:E43-E48。 10. 連惠邦,柴鈁武(1997),「防砂壩下游河床之沖刷模式」,中華水土保持學報,28(1):59-68。 11. 陳正炎、洪耀明、陳聖文(1999),「帶工法設置對投潭水作用下局部沖刷之研究」,第十屆水利工程研討會,逢甲大學:F36-f43。 12. 彭思顯(1994),「投潭水作用下局部沖刷之動態研究」,國立中興大學土木工程研究所碩士論文。 13. 黃進坤、張忠潔(2003),「位於跌水下游之橋墩沖刷特性」,中華水土保持學報,34(3):251-259。 14. Abt, S.R., Leech J.R., Thornton C.I. and Lipscomb C.M. (2001), “Articulated Concrete Block Stability Testing,”Journal of the American Water Resources Association, 37(1). 15. ASTM D5141, (2005),“Standard test method for determining filtering efficiency and flow rate of a geotextile for silt fence application using site-specific soil,”ASTM Standards, ASTM International. 16. ASTM D6567, (2005),“Standard test method for measuring the light penetration of a turf reinforcement mat,” ASTM Standards, ASTM International. 17. D’Agostino, V. and Ferro, V. (2004),“Scour on Alluvial Bed Downstream of Grade-Control Structures,”Journal of Hydraulic Engineering, 130(1): 24-37. 18. Gaudio, R., Marion A. and Bovolin V. (2000),“Morphological effects of bed sills in degrading rivers,”Journal of Hydraulic Research, 38(2): 88-96. 19. Guy, B. T., Dickinson W. T., Wall G. J. and Rudra R. P. (1987),“Characterization of interrill transported sediment,”ASAE Paper No.87-2028, ASAE, St. Joseph, MI 49085. 20. Hjulstrom, F. (1935),“Studies of the morphological activity of rivers as illustrated by the River Fyries,”Geological Institute, University of Uppsala, 25: 221-227. 21. Liebenow, A. M., Elliot W. J., Laflen J. M. and Kohl K. D. (1990),“Interrill erodibility: Collection and analysis of data from cropland soils,”Transactions of the ASAE, 33(6): 1882-1888. 22. Morgan, R. P. C. (1980),“Field studies of sediment transport by overland flow,”Earth Surface Processes, 3: 307-316. 23. Morgan, R. P. C., Martin, L. and Noble, C.A. (1980),“Soil erosion in the United Kingdom: a case study from midbedfordshire,”Silsoe College, Occasional Paper 14. 24. Morgan, R. P. C. (2004),“Soil Erosion and Conservation,”Blackwell. 25. Mutchler, C. K. and Young, R. A. (1975),“Soil detachment by raindrops,”In Predicting Sediment Yields and Sources USDA-ARS Publication, 40: 113-117. 26. Palmer, R. S. (1964),“The influence of a thin water layer on water-drop impact forces,”International Association of Scientific Hydrology Publication, 65: 141-148. 27. Torri, D., Sfalanga, M. and Chisci, G. (1987),“Threshold conditions for incipient rilling,”Catena Supplement, 8: 97-105. 28. Watson, D. A. and Laflen, J. M. (1986),“Soil strength, slope and rainfall intensity on interrill erosion,”Transactions of the ASAE, 29(1): 98-102.
摘要: 
The study uses three kinds of experiment methods to simulate articulated armor-layer system to apply for control soil erosion, protection on downstream bed of the hydraulic structure, and then evaluation of the effects of armor-layer system. First, in sloping fields protection experiment, to determine the three basic elements which are light-shielding rate, surface roughness and apparent opening size of three common artificial geo-textiles in Taiwan and woodblock gridnets by related experimental equipment uses artificial rainfall instrument and hydraulic launders. The testing conditions are the gradients of 35˚ and 45˚ and the rainfall intensity of 130mm/hr. At last, evaluate the anti-erosion efficiency of woodblock gridnets and artificial geo-textiles. Second, in downstream bed of the hydraulic structure protection experiment, it uses differently constructive models of armor-layer system to test the protective efficiency and to observe the types of score holes at different rates of flows and drop heights of conditions. Last, in the experiment of sediment protection under channel bed, applying different construction model of armor-layer system to test protective efficiency and compared with protective efficiency without geo-textiles protection. The results were summarized as below.
In the experiment of sloping field protection, the researcher found the anti-erosion efficiency of common artificial geo-textiles in Taiwan and light-shielding rate are proportional. According to the soil erosion test, the woven three-D netting with the light-shielding rate of 83.13% has the highest anti-erosion efficiency. In contrast to other artificial geo-textiles, the woodblock gridnets without high light-shielding rate could protect raindrop impact, but use uniform distribute woodblock to increase the anti-erosion efficiency upper than 34%. In downstream bed of the hydraulic structure protection experiment found the different constructive models of armor-layer system has different types. Although armor-layer system can slow down the rate of the score holes, the differences between scores holes don't have the increasing phenomenon. No matter what kind of types of armor-layer system in the experiment of sediment protection under channel bed, armor-layer system not only plays the role of decreasing the efficiency of erosion, but also has higher relationship between the rate of anti-erosion and the density of armor-layer.

本研究透過三種不同室內實驗配置,模擬具連結特性之護甲墊結構體分別應用於抑制坡面土壤沖蝕、水工結構物下游床砂面保護及渠底床面泥砂保護,進而測試護甲墊於下列三種實驗配置之適用性與成效評估:在坡面保護實驗中,由相關實驗設備測定台灣常見3種人造被覆資材與木塊式護甲墊(木格網)之光遮蔽率、表面粗糙度和表觀孔徑等三項基本數據並運用人工降雨實驗以坡度35°、45°及降雨強度130mm/hr條件下鋪設木塊式護甲墊與人造被覆資材進行抗沖蝕成效評估;水工結構物下游砂面保護實驗中,在不同流量與跌水高度條件下導入不同結構型態之護甲墊,觀察沖刷坑型態及保護成效;渠底保護實驗中,利用不同流量條件觀察不同結構型態之護甲墊相對於無鋪設在保護床面泥砂成效之差異性。由上述實驗中,分別獲得下述之實驗結果。
在坡面保護實驗中,本研究發現台灣現有人造被覆資材之抗沖蝕效率和光遮蔽率具有相關性,其中光遮蔽率為83.13%之編織立體網具有最高之抗沖蝕效率。而相較於其他種資材,木格網雖然缺乏高光遮蔽率具有阻擋雨滴打擊坡面之能力,但均衡分散具護甲作用的木塊可產生攔阻泥砂和減緩逕流能量之功效來提高抗沖蝕效率,均有34%以上;在水工結構物下游砂面保護實驗中發現床砂面之沖刷坑現象會因跌水類型而發展不同型態,而導入護甲墊後可減緩沖刷坑發展速率,但最終沖刷坑大小差異性不大甚至有增加現象;在渠底保護實驗中,不論鋪設何種型態之護甲墊均具有減少沖刷量之功效,且發現抑制沖刷率與護甲墊之密度具有高度相關性。
URI: http://hdl.handle.net/11455/34574
其他識別: U0005-2706200723230000
Appears in Collections:水土保持學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.