Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34630
標題: 以AnnAGNPS推估大湖溪集水區泥砂產量之研究
Sediment Yield Estimation of Da Hu Creek Watershed by Using AnnAGNPS
作者: 劉建昌
Liou, Jian-Chang
關鍵字: AnnAGNPS;農業非點源污染模式;RUSLE;sediment yield;修正土壤流失公式;泥砂產量
出版社: 水土保持學系所
引用: 參考文獻 1. 王如意、易任(2003),「應用水文學下冊」,國立編譯館,p. 217。 2. 水土保持技術規範(2003) 行政院農業委員會水土保持局編印。 3. 林昭遠、林文賜(2000),「集水區地文水文因子自動萃取之研究」, 中華水土保持學報,31(3):247-256。 4. 林昭遠、林文賜(2001),「集水區資訊系統(WinGrid)入門」,暐帥股份有限公司。 5. 林雍富(2001)「應用BASINS模式於非點源污染傳輸之模擬—以霧社水庫為例」,國立台灣大學土木工程學研究所碩士學位論文,p5-7。 6. 胡毓解(2004)「農業非點源污染模式之應用—以萬安溪集水區為例」,國立屏東科技大學水土保持系碩士論文,p74-76。 7. 陳文福(1997),「陳有蘭溪集水區之地形特性與土地利用之關係」,水土保持學報,29(2):137-155。 8. 陳萓蓉、夏禹九(2000),「農業非點源汙染模式應用於河川保護帶配置之探討」,中華水土保持學報,30(1):1-12。 9. 許家豪(2006)「應用DEM萃取集水區水系門檻值變異與影響因素之探討」,國立中興大學水土保持學系碩士論文,p40-43。 10. 許桓碩(2007)「AnnAGNPS模式推估集水區逕流量與泥沙產量之適用性探討」,國立中興大學水土保持學系碩士論文,p46-54。 11. 萬鑫森、黃俊義(1981),「台灣溪北部土壤沖蝕及流失量之估算」,中華水土保持學報,12(1):57-67。 12. 謝兆申、王明果(1991)「台灣地區主要土類圖輯」,p22-256 13. 盧光輝(1996),「土壤沖蝕模式之建立」,收入姜善鑫、湯曉虞、吳輝龍、陳禮仁主編85年度水土保持及集水區經營研究計畫成果彙編,p1-19.。 14. 盧昭堯、吳藝昀(2003)「台灣天然雨滴粒徑分布及年降雨沖蝕指數圖之修訂」,國立中興大學土木工程學系碩士論文,p86。 15. 劉熙,(1985)「果園土壤管理」,五州出版社,p264。 16. 謝佳玲(1999)「不同土壤沖蝕模式推估土壤流失量之比較」,國立中興大學水土保持學系碩士論文,p15-20。 17. Aitken, A.P. (1973) Assessing systematic errors in rainfall-runoff models. Journal of Hydrology. 20:121–136. 18. Bhuyan, S.J., J.K. Koelliker, L.J. Marzen, and J.A. Harrington. (2003) An integrated approach for water quality assessment of a Kansas watershed. Environmental Modelling and Software. 18:473-484. 19. Baginska, B., W.M. Home, and P.S. Cornish. (2003) Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST. Environmental Modelling and Software. 18:801-808. 20. Dunne, T. and L.B. Leopold (1978) Water in environmental planning, New York: WH Freeman. 21. Foster, G.R., D.K. McCool, K.G. Renard, and W.C. Moldenhauer, (1981), Conversion of the Universal Soil Loss Equation to SI metric units, Journal of Soil and Water Conservation, 36:355-359. 22. Grayson, R.B., I.D. Moore, and T.A. McMahon. (1992) Physically-based hydrologic modeling, 2. Is the concept realistic? Water Resource Research. 26:2659-2666. 23. Grunwald, S., and L.D. Norton. (2000) Calibration and validation of a non-point source pollution model. Agricultural Water Management. 45:17-39. 24. Jenson, S.K. and J.O. Domingue. (1988), “Extracting Topographic Structure from Digital Elevation Date for Geographic Information System Analysis”, Photogrammetric Engineering & Remote sensing, 54(11):1593-1600. 25. Jurgen, G., Lawrence W.M., Ronald L.B. (2000),” Topagnps User Manual”, USDA. 26. Jennifer, B.S., B. David, E.L. Usery, V. George, R.C. Lowrance, and J.M. Sheridan. (2001) Use of the AnnAGNPS model for a watershed in the coastal plain of Georgia. 9th National Nonpoint Source Monitoring Workshop, p.27-30. 27. Lenzi, M.A., and M.D. Luzio. (1997) Surface runoff, soil erosion and water quality modeling in the Alpine watershed using AGNPS integrated with a Geographic Information System. European Journal of Agronomy. 6:1-14. 28. Legates, D.R., and G.J. McCabe. (1999) Evaluating the use of “goodness- of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research. 35(1):233–241. 29. Mark, D.M.(1984), “Automated Detection of Drainage Networks from Digital Elevation Models”, Cartographica (Auto-Carto Six Selected Papers), 21(2-3):168-178. 30. Martz, L.W. and J. Garbrecht (1998), “The Treatment of Flat Areas and Depressions in Automated Drainage Analysis of Raster Digital Elevation Models”, Hydrological Processes,12:843-855. 31. Martz, L.W. and J. Garbrecht (1999), “An Outlet Breaching Algorithm for the Treatment of Closed Depressions in a Raster DEM”, Computers & Geosciences,25:835-844. 32. Nash, J.E., and J.V. Sutcliffe. (1970) River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology. 10:282-290. 33. O’Callaghan, J.F. and D.M. Mark (1984), “The Extraction of Drainage Networks from Digital Elevation Date”, Computer Graphics and Image Processing, 28:323-344. 34. Panuska, J.C., I.D. Moore, and L.A. Kramer. (1991) Terrain analysis:Integration into the agricultural nonpoint source (AGNPS) pollution model. Journal of Soil and Water Conservation. 46(1):59-64. 35. Pekarova, P., A. Konicek, and P. Miklanek. (1999) Testing of AGNPS model application in Slovak microbasins. Phys. Chem. Earth (B), 24(4):303-305. 36. Rode, M., and H.G. Frede. (1997) Modification of AGNPS for agricultural land and climate conditions in Central Germany. Journal Environmental Quality. 26:165-172. 37. Ronald, L.B., and F.D. Theurer.(2005). “AnnAGNPS Technical Processes. USDA-ARS”, National Sedimentation Laboratory. 38. SCS.(1986).Technical Release 55:Urban hydrology for small watersheds. Soil Conservation Service, USDA. p. 17. 39. Srinivasan, R., and B.A. Engel. (1994) A spatial decision support system for assessing agricultural non-point source pollution. Water Resource Bulletin. 30(3):441-452. 40. Shepherd, R.G., and W.F. Geter. (1995). Verification, calibration, validation, simulation: protocols in groundwater and AGNPS modeling.In: Proceedings of the International Symposium: Water Quality Modeling, April 2e5, Orlando, Florida. American Society of Agricultural Engineers, pp. 87-91. 41. Shrestha, S., Mukand S. Babel, Das Gupta, A., Kazama, F.(2005)Evaluation of annualized agricultural nonpoint source model fora watershed in the Siwalik Hills of Nepal. Environmental Modelling and Software. Volume 21, Issue 7, July 2006, Pages 961-975. 42. Wischmeier, W.H. (1959) A Rainfall Erosion Index for A Universal Soil Loss Equation. Soil Science Society of American Proceeding, 23:246-249.
摘要: 
AnnAGNPS model with the module of RUSLE to simulate watershed sediment yield was developed by USDA-ARS and NRCS for several years. There is a need to study the feasibility of its application in Taiwan. This research employed the model to determine the reasonable stream network threshold using Critical Source Area (CSA) and Minimum Source Channel Length (MSCL), and then simulate the sediment yield at Da Hu Creek Watershed.
The results show that there is a good fitting with real stream network under the threshold of CSA=50ha and MSCL=350m. By using the sensitivity analysis of AnnAGNPS for sediment yield, the sensitivity relates to sediment yield is live root mass, cover ratio, CN value in order.
Using measured data of sediment yield from 1995 to 1997 to assign the suitable values of parameters of the model, verifying the estimation results of the model by using data from 1998 to 2000, and applying ED to assess the accuracy and/or feasibility of the model are fulfilled in this study. The estimation difference (ED) of the model for sediment yields is 0.15, 0.17, and 1.08 for the annual, over one-day precipitation, and daily precipitation simulation respectively. It means that the model is recommended not to be used to estimate the events with short duration. Two types of main errors encountered can be categorized as (1).hysteresis effects on the recession curve derived from observing and/or simulation data, and (2).the errors of setting value of parameters for the model simulation. Precipitation pattern is the most possible choice, which can be assigned to set each precipitation event for better results.

農業非點源污染模式(Annualized AGricultural NonPoint model, AnnAGNPS)由美國農業部農業研究局(USDA-ARS)與自然資源保育局(NRCS)共同研發,模式以RUSLE為架構且以不規則網格作為分析單元。AnnAGNPS以臨界來源面積(CSA)及最短來源渠道長度(MSCL)作為分析集水區中水系分布及分析單元之依據,模式在國外已應用多年,對於推估台灣地區集水區泥砂產量之可行性,則需進一步驗證。本研究以AnnAGNPS探討模式門檻值設定之合理性及推估大湖溪集水區泥砂產量。
以臨界來源面積(CSA)為50 ha,最短來源渠道長度(MSCL)為350 m可獲得較精確之水系分布;敏感度分析結果,對泥砂產量之敏感度由高至低依序為根系單位面積鮮重、植物覆蓋度、CN值。以1995~1997年間實測泥砂量對模式內各參數進行校準,再以1998~2000年間全年、單日以上及單日累積降雨量所產生泥砂推估值進行驗證,並以估計差異(ED)評估。驗證期間全年泥砂推估值與實測值誤差介於25%左右,但以單日且累積降雨量較小之事件,無法精確之推估。主要原因為退水歷線誤差及參數設定誤差。ED值越趨近於0時,表示實測值與推估值越接近,依全年、單日累積降雨及單日以上累積降雨排序,ED值分別為0.15、0.17、1.08,以單日累積降雨事件估計誤差為最大,但由ED值顯示模式對於單日以上累積降雨事件有一定模擬能力,如能針對該種事件修改其細部的參數設定如:降雨型態,更能增加模擬值之精確度。
URI: http://hdl.handle.net/11455/34630
其他識別: U0005-0508200823574000
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.