Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34639
DC FieldValueLanguage
dc.contributor盧光輝zh_TW
dc.contributorKwong-Fai Loen_US
dc.contributor曹舜評zh_TW
dc.contributorShun-Ping Tsaoen_US
dc.contributor.advisor林俐玲zh_TW
dc.contributor.advisorli-ling linen_US
dc.contributor.authorHunz, ching-Huien_US
dc.contributor.author洪靖惠zh_TW
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T07:48:05Z-
dc.date.available2014-06-06T07:48:05Z-
dc.identifierU0005-0707200813013900zh_TW
dc.identifier.citation1. 林正錺、蘇銘燦,1986,多孔體不飽和導水度之理論計算,中國農業化學會誌,24:72-79。 2. 林明義,2000,九份二山崩塌地土壤水分特性之研究,國立中興大學水土保持學系研究所碩士論文。 3. 林俐玲,1996,土壤物理學實習手冊,國立中興大學。 4. 張舒婷,2007,土壤水分特性曲線與不飽和水力傳導度之研究,國立中興大學水土保持學系碩士論文。 5. 黃俊英,2000,多變量分析an introduction,翰蘆圖書出版有限公司。 6. 萬鑫森 譯,1987,基礎土壤物理學,國立編譯館主編,茂昌圖書有限公司發行。 7. 謝銘,2002,中部地區坡地土壤水分流動之研究,國立中興大學水土保持學系碩士論文。 8. Arruda, F.B., J. Zullo, and J.B. Oliveira. 1987. Parãmetros de solo para cálculo de água disponivel com base na textura do solo. R. Bras. Ci. Solo 11:11-15 9. Arya, L.M., and L.F. Paris. 1981. A physico-empirical model to predict soil moisture characteristic from particle size distribution and bulk density data. Soil Sci. Soc. Am. J. 47:1023-1030. 10. Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 9:177-213. 11. Brady, N.C., and R.R. Weil. 1996. :The Nature and Properties of soil. 11th ed.Prentice-Hall, lnc.New Jersey. 12. Brooks, R. H., and A. T. Corey. 1964. Hydraulic properties of porous media. Hydrology Papr 3. Colorado State Univ. Fort Cniv. Fort Collins, CO. J. Plant Nutr. Soil Sci. 2003, 166:111-119. 13. Brutsaert,W. 1966.:Probability laws for pore size distribution, Soil Science 101:85-92. 14. Burdine, N.T. 1952.:Relative permeability calculations from pore-size distribution data. Trans. AIME 198:35-42. 15. Cuenca, R.H., M. Ek, and L. Mahrt. 1996.:Impact of soil water property parameterization on atmospheric boundary layer simulation. J. Geophnal. Res. 101:7269-7277. 16. Comegna, V., P. Damiani, and A. Somella. 1998. Use of a fractal model for determining soil water retention curvrs. Geoderma 85:307-323. 17. Fredlund, D.G., and A.Xing. 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal 31:521-532. 18. Gardner, W.R., and Xing. 1994.:Equations for the soil-water characteristic curve. Canadian Geotechnical Journal 31:521-532. 19. Gupta, S.C., and W.E. Larson. 1979.:Estimation soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resour. Res. 15:1633-1635. 20. Haverkamp, R., and J.Y. Parlange. 1986. : Predicting the water retention curve from particle-size distribution: 1.Sandy soils without organic matter. Soil Sci. 142: 6325-33. 21. Husz, G.. 1967. Die Bestimmung von Porengrößenvolumen und Porengrößenverteilung mit Hilfe von multiolen Rwgressionen. Z. Pflanzenernähr. Düng. Bodenk. 116:115-125. 22. Kern, J.S. 1995. Evaluation of soil water retention models based on basic soil physical properties. Soil Sci. Soc. Am. J. 59:1134-1141. 23. McCuen, R.H., W.J. Rawls, and D. L. Brakensiek. 1981. :Statistical analysis of the Brooks-Corey and the Green-Ampt parameters across soil texture. Water Resour. Res. 17, 1005-1013. 24. McKee, C.R., and A.C. Bumb. 1984.:The importance of unsaturated flow parmeters in designing a hazardous waste site. Hazardous Wastes and Environmental Emergencies. pp. 50-58. 25. Mishra, S., J. C. Parker and N. Singhal. 1989. Estimation of soil hydraulic properties and their uncertainty from particle size distribution data. J. Hydrol. 108:1-18. 26. Minasny, B., A. B. McBratney, and K. L. Bristow. 1999. Comparison of different approaches to the development of pedotrandfer functions for water-retention curves. Geoderma 93:225-253. 27. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522. 28. Pachepsky, Y.,D. Timlin, and G. Varallyay. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sc. Soc. Am. J. 60:727-733. 29. Rawls, W. J., and D. L. Brakensiek. 1982. Estimating soil water retention from soil properties. J. Irrig. Drainage Div. ASCE 108:166-171. 30. Rawls, W. J., and D.L. Brakensiek. 1985. Prediction of soil water properties for hydrologic modeling. P. 293-299. In E. Jones and T.J. Ward (ed.) Watershed Management in the Eighties. Proc. Symposium of Irrig. Drainage Div. ASCE. Denver, CO. 30 Apr.-1 May 1985. ASCE, New York. 31. Rawls, W. J., Gish, and D. L. Brakensiek. 1991. Estimation soil water retention from soil physical properties and characteristic. Adv. Soil Sci. 16:213-234. 32. Richards, L.A. 1931.Capillary conduction of liquids in porous mediums. Physics 1:318-333. 33. Saxton, K.E., W.J. Rawls, J.S. Romberger, and R.I. Papendick. 1986. Estimating generalized soil-water characteristic from texture. Soil Sci. Soc. Am. J. 50:1031-1036. 34. Schaap, M. G., and W Bouten. 1996. Modelling water retention curves of soil using neural network. Water Resour. Res. 32: 3033-3040. 35. Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 1998. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 62:847-855. 36. Scheinost, A. C., W. Sinowski, and K. Auerswald. 1997. Regionalization of soil water retention curves in highly variable soilscape: I. Developing a new pedotransfer function. Geoderma 78:129-143. 37. Silva, A.S., L.T.L. Brito, C. A. V. Oliveira, and A. W. Mota. 1990. Parãmetros de solo em função da umidade na capacidade de campoem área irrigáveis do trópico semi-árido Brasileiro. Pesq. Agropec. Bras. 25:103-116. 38. Tyler, S. W., and S .W. Wheatcraft. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53:987-996. 39. Tietje, O., and M. Tapkenhinrichs. 1993. Evaluation of pedotransfer functions. Soil Sci. Soc. Am. J. 57:1088-1095. 40. Tomasella, J., and M.G. Hodnett. 1998. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Sci., 163:190-202. 41. Tomasella, J., M. G. Hodnett, and L. Rossaato. 2000. Pedotransfe function for the estimation of soil water retention in Brazilian soils. Soil Sci.Soc. Am. J. 64:327-338. 42. Tomasella, J., Ya Pachepsky, S. Crestana, and W.J. Rawls. 2003. Comparision of two techniques to develop pedotransfer functions for water retention. Soil Sci. Soc. Am. J. 67:1085-1092. 43. Topp, G.C., and E. E. Miller. 1966. Hystersis moisture characteristics and hydraulic conductivities for glass-bead media. Soil Sci. Soc. Am. Proc. 30:156-162. 44. Teepe, R., H. Dilling, and F. Beese. 2003. Estimating water retention curves of forest soils from soil texture and bulk density. J. Plant Nutr. Soil Sci. 166:111-119. 45. van den Berg, M., E. Klant, L.P. van Reeuwijk, and G. Sombroek. 1997. Pedotransfer function for the estimation of moisture retention characteristic of Ferrasols and related soils. Geoderma 78:161-180. 46. van der Berg, M. E. 1996.. Available water capacity in strongly weathered soils of South East and Southern Brazil. In Proc. 13th Congresso Latinoamericano de Ciências do Solo. “guas de Linóia. Sao Paulo, Brazil. 47. van Genuchten, M Th. 1980. : A closed-from equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am.J.44:892-898. 48. van Genuchten, M.Th., and D.R. Nielsen. 1985. On describing and predicting the hydraulic properties of unsaturation soils. Ann. Geophys. 3:625-628. 49. Vereecken, H. J. Maes, J. Feyen, and P. Darius. 1989: Estimating the soil moisture retention characteristic from texture, bulk density and carbon content. Soil Sci. 148:389-403. 50. Wösten J.H.M., P.A. Finle, and M.J.W. Janson. 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227-232. 51. Wösten, J. H. M., A. Lilly, A. Nemes, and C. Le Bas. 1999: Development and use of a database of hydeaulic properties of European soil. Geoderma 90:169-185.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/34639-
dc.description.abstract本研究利用室內壓力鍋排水實驗,求取台灣地區13種不同土壤樣本之土壤水分特性曲線,土壤樣本質地包括砂土、砂質壤土、壤土、粘質壤土、粘土。室內試驗所得土壤水分含量與壓力勢能之關係,利用van Genuchten Model 擬合,得到水分特性曲線方程式之水力特性參數α、n值。將水力參數α、n值,採用SPSS軟體以複迴歸分析方法,以土壤物理性質作為變數,歸納出土壤基本物理性質與參數α、n值關係之推估方程式。另外採集3種土壤樣本作為推估方程式之驗證土樣,探討推估式的適用性。並界定不同質地土壤van Genuchten Model 參數之適用範圍。 研究結果顯示,利用六種土壤基本性質包括總體密度、孔隙率、田間容水量、砂粒百分比、粘粒百分比、有機質含量。進行迴歸分析得到的α推估式及n值推估式,以壤土繪成之水份特性曲線最佳,其次是砂質壤土,粘質壤土較差。推估式表示如下: ln(α)=1.228BD+8.226*10-2f-5.868*10-2FC+4.86*10-2sand+2.885*10-2clay+0.233C-12.743 ln(n)=2.239BD+4.49*10-2f-1.243*10-2FC+4.254*10-3sand+9.193*10-3clay+1.397*10-2C-4.838 本研究中,壓力鍋排水曲線得到的水力特性參數α值,砂土為0.002734cm-1、砂質壤土介於0.001695~0.014591cm-1、壤土介於0.000460~0.002804cm-1、粘質壤土介於0.000292~0.017212cm-1、粘土介於0.000247~0.000447cm-1之間。由於本研究土樣得到之n參數,與質地沒有明顯的相關性,因此不界定n值在不同質地之範圍。zh_TW
dc.description.abstractThis study used the pressure plate experiment to obtain soil water characteristic curves in the laboratory. Thirteen soil samples includeng sand, sandy loam, loam, clayey loam, and clay used to establish the relationship of soil water content and pressure potential. The parameters α and n of the van Genuchten Model were obtained by curve fitting technique. Multiple regression equations were estimated using soil physical properties and statistical SPSS software. Three soil samples were used to validate suitability of the equations. This study also defined the range of the equation parameters for different soil texture in Taiwan. Six soil physical properties including bulk density, porosity, field capacity, percent of sand, percent of clay, organic matter content were correlated with α and n parameters of the van Genuchten model. Regression analysis results showed that the equation parameter α and n related the best with the loamy soil water characteristic curve, followed by sandy loam, and clay loam. The estimated regression equation were as follows: ln(α)=1.228BD+8.226*10-2f-5.868*10-2FC+4.86*10-2sand+2.885*10-2clay+0.233C-12.743 ln(n)=2.239BD+4.49*10-2f-1.243*10-2FC+4.254*10-3sand+9.193*10-3clay+1.397*10-2C-4.838 The range of the van Genuchten Model for parameter α is as 0.002734 cm-1 for sand;0.001695~0.014591cm-1 for sandy loam;0.000460~0.002804cm-1 for loam;0.000292~0.017212cm-1 for clay loam;0.000247~0.000447cm-1 for clay. Due to the parameter n was not significantly related to soil texture, its range, therefore, was not defined in this study.en_US
dc.description.tableofcontents摘要 I Abstrect III 目錄 V 圖目錄 VIII 表目錄 IX 照片目錄 X 壹、前言 1 1-1 研究動機 1 1-2 研究目的 2 貳、前人研究 3 2-1 水分特性關係 3 2-2 van Genuchten 模式 4 2-3 PTF 模式之發展 6 2-4 迴歸分析水分特性參數 8 參、材料與方法 12 3-1研究流程 12 3-2研究材料 14 3-3 研究方法 18 肆、結果與討論 26 4-1壓力鍋室內排水實驗擬合結果 26 4-2複合迴歸分析vG Model 之參數 33 4-3 迴歸分析結果之驗證 39 伍、結論與建議 46 陸、參考文獻 48 附錄 壓力鍋試驗擬合van Genuchten數據 54 A1 石英砂 54 B1 台中霧峰 56 B2 九份二山崩塌區 58 B3 華梵大學 60 C1 苗栗泰安鄉 63 C2南投月桃巷 65 C3嘉義瑤子園 67 C4嘉義大學 69 C5九份二山梅園 72 D1台中水井 74 D2嘉義照東園 76 E1魚池大雁澀水 78 E2高嶺土 81zh_TW
dc.language.isoen_USzh_TW
dc.publisher水土保持學系所zh_TW
dc.subjectPressure plate experimenten_US
dc.subject壓力鍋zh_TW
dc.subjectWater characteristic curveen_US
dc.subjectvan Genuchten Modelen_US
dc.subjectMultiple regressionen_US
dc.subjectParameter αen_US
dc.subjectParameter nen_US
dc.subject水分特性曲線zh_TW
dc.subjectvan Genuchten模式zh_TW
dc.subject複迴歸分析zh_TW
dc.subjectα參數zh_TW
dc.subjectn參數zh_TW
dc.title土壤水分特性曲線參數與物理性質關係之研究zh_TW
dc.titleRelationship of Soil Water Characteristic Curve Parameters and Soil Physical Propertiesen_US
dc.typeThesis and Dissertationzh_TW
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
Appears in Collections:水土保持學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.