Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34766
標題: 橋樑墩基受河床沖刷影響之力學行為三維數值分析
3-D Numerical Analyses of bridge Pier Foundation Subjected to Erosion
作者: 康惠翔
Kang, Hui-Hsiang
關鍵字: maximum scour depth of bridge pier;橋墩最大沖刷深度;piled raft foundation;settlement of bridge pier;橋基樁筏基礎;橋墩沉陷
出版社: 水土保持學系所
引用: 1.中華人民共和國交通部公路規劃設計院(1998),公路橋位勘測設計規範(JTJ-062-91),人民交通出版社。 2.中國土木水利工程學會(2003),跨河橋梁水文水理考量準則及注意事項,交通部台灣區國道新建工程局。 3.日本建設省(1997),河川管理施設等構造令。 4.交通部技術標準規範公路類公路工程部(2001),公路橋梁設計規範。 5.肖盛燮、凌天清、陳世民、彭凱(1999),公路與橋梁抗洪分析,人民交通出版社。 6.林澄清、陳連乾(1998),高屏地區賀伯颱風災害檢討報告,台灣公路工程,第二十三卷,第四、五期,pp. 64-71。 7.吳沛倫(2001),不均勻橋墩及群樁基礎之局部沖刷研究,國立中央大學土木工程學系,碩士論文。 8.林呈(1998),本省西部重要河川橋樑橋基災害分析與橋基保護工法資料庫系統建立。 9.林呈(1999),跨河構造物防治沖刷之技術與策略研究—應用剛性或柔性欄沙堰作為橋基保護方法之評估探討,行政院公共工程委員會專題研究計劃成果報告,pp.1-357。 10.林呈(2001),台灣河流之沖刷對橋梁基礎與道路邊坡之影響及因應對策研究。 11.林呈、褚炳麟、蔡清標等(2005),台21線等公路橋梁歷年颱洪土石流沖刷災害附件資料編撰。 12.林呈、張荻薇、施邦築、羅慶瑞等 (2005),河川橋梁之橋墩沖刷保護工法之研究。 13.陸浩、高冬光(1991)橋樑水力學,人民交通出版社,pp164~184 14.許澤善、黃家寅(2005),河床沖刷對曲線型橋梁3D動態行為之影響,逢甲大學土木工程學系,碩士論文。 15.陳清泉等(2005),河川橋梁沖刷並補強後之安全評估。 16.陳生金等(2006),災時高效率及高經濟型橋梁補強及技術之研發。 17.陳振川(2007),橋梁監測預警系統及沖刷保護措施及補強等策略之研究成果報告。 18.堅尼士工程顧問(2007),公路生態工程系統發展架構與評估之研究。 19.劉長齡、詹元豪、黃進坤(1994)橋墩單樁與群樁之沖刷研究,第七屆水利工程研討會論文集 20.蔣煥章(2002),公路水文勘測設計與水毀防治,人民交通出版社。 21.經濟部(2004)跨河建造物設置審核要點,經濟部93.07.28經授水字第09320213590號令修正。 22.Ahmed, F., Rajaratnam, N. (1998). Flow around bridge piers. Journal of Hydraulic Engineering, 124(3):288-300. 23.Bowles, J. E.(1984) “Physical and Geotechnical Properties of soils, McGraw-Hill 24.Brinkgreve ,R. B. J. (2004), Plaxis 3D Foundation Manual 25.Cosuto(1994), D. P “Foundation Design Principle and practices” Prentice-Hall, PP.502,602 26.Dargahi B.,(1990)”Controlling mechanism of local scouring”,Journal of Hydraulic Engineering,ASCE, Vol. 116, No.10, pp.1197~1214 27.Das, B. M.,(1998)“Principles of Geotechnical Engineering”, PWS Publishing company 28.Dey S.(1999)”Time-variation of scour in the vicinity of circular piers”,Proc.Instn Civ.Engrs Wat.,Marit.&Energy, Vol.136,pp.67-75 29.Ettema, C. H., Coleman D. C., Vellidis G., Lowrance R., andRathbun S. (1998). Spatio-temporal distributions of bacterivorous nematodes and soil resources in a restored riparian wetland. Ecology 79(8): 2721-2734. 30.Farraday, R.V. and Charlton, F.G. (1983),Hydraulic Factors in Bridge Design, Hydraulic Research Station, Wallingford, England,. 31.Groyens(1944), pier nose and downstream of bridges, Annual Report(Technical), cwprs, Pune. 32.raf, W. H., and Istiarto, I. (2002). “Flow pattern in the scour hole around a cylinder.” Journal of Hydraulic Research, 40(1), 13-19. 33.Inglis C C (1944) “Maximum depth of scour at heads of guide banks. 34.Kumar, V., Ranga Raju, K. G., and Vittal, N. (1992), “Reduction of Local Scour around Bridge Piers Using Slots and Collars.”, Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 12, pp. 1302-1305 35.Kothyari,U.C, and Grade, R. J. (1992),”study of Transient bed Profiels in Non-uniform Sediments”, APD-IAHR Congress, Proc., International Association for Hydraulic Research,(LAHR)Pune, India, pp B105-B117. 36.Kothyari ,U. C. and Grade ,R. J. (1992),”Analysis of Size Distribution of River Bed Sediments ”,APD-IAHR Congress, Proc., International Association for Hydraulic Research,(LAHR)Pune, India,pp B93-B104 37.Kothyari U. C., Garde R. J. and Ranga Raju K. G. (1992) “Temporal variation of scour around circular bridge piers”, J.Hydr. Engrg., ASCE, Vol.118, No.8, pp.1091~1106. 38.Kothyari U C(2003) ,”Bridge pier scour in gravel-cobble and cohesive bed rivers”, Report submitted to the IRC–sub-committee to review the aspects of scour around bridge foundations 39.Lacey G (1929), Stable channels in alluviums. J. Institution of Engineers, Paper No. 4736, 229 40.Laursen, E. M.(1963), An analysis of relief bridge scour: Journal Hydraulic Division, American Society of Civil Engineering, v. 92, no. HY3. 41.Melville, B. W. and A. J. Raudkivi (1977),“Flow Characteristics in Local Scour at Bridge Piers,” Journal of Hydraulic Research, Vol.15, No.4, pp.373-380. 42.Raudkivi, A. J. (1986), “Functional Trends of Scour at Bridge Piers” Journal of Hydraulic Engineering, ASCE, Vol.112, No.1 ,January, pp.1-13. 43.Melville, B. M. & Coleman, S. E., (2000)”Bridge Scour”, Water Resources Publications, LLc., Highlands Ranch, Colorado, USA 44.Richardson J., Dillon, A., and McKnight, C.(1993). Why Physical Representations are not Semantic Intentions. p169-191 45.Richardson, E. V. and Davis, S. M.(2001), Evaluating Scour at Bridges, fourth edition, Publication No. FWHA NHI 01 001, Hydraulic Engineering Circular (HEC), No.18,(Federal Highway Administration. 46.Stephen T., Benedict and Andral W. Caldwell,USGS report (2005-5289) U.S. Geological Survey Scientific Investigations Report 2005—5289, 98 pages
摘要: 
為探討橋樑在水流沖刷作用下,橋墩沉陷模式與橋基樁筏基礎之應力分布,本研究採用數值工具,進行橋墩沖刷之三維有限元素土壤~結構互制分析。其中,採用高雄-屏東縣界間之高美大橋橋墩沖刷沉陷監測資料,與三維數值模擬分析結果進行比對,以驗證三維土壤~結構互制數值模式之有效性。最後,配合各種橋墩沖刷模式,並針對不同配置之橋基樁筏基礎(以下簡稱樁筏基礎)進行參數研究,以建立橋墩沉陷及樁筏基礎應力分布之預測關係式。
當橋墩之最大沖刷深度y為最大容許沖刷深ymax (=3.4 m)之1~3倍(即y=3.4 m、6.8 m、10.2 m)時,由數值分析所得之橋墩沉陷量Du、基樁最大彎矩Mmax、最大剪力Vmax、以及最大軸力Nmax,分別與其容許值Mu、Vu以及Nu之比值,可分別列舉如下:(1)無因次化最大沉陷比(Du/y)之大小依序為:(Du/y)y=6.8 m > (Du/y)y=10.2 m > (Du/y)y=3.4 m;(2)無因次化最大彎矩比(Mmax/Mu)之大小依序為:(Mmax/Mu)y=6.8 m > (Mmax/Mu)y=10.2 m > (Mmax/Mu)y=3.4 m;(3)無因次化最大剪力比(Vmax/Vu)之大小依序為:(Vmax/Vu)y=6.8m > (Vmax/Vu)y=10.2 m > (Vmax/Vu)y=3.4m;(4)無因次化最大軸力比(Nmax/Nu)之大小依序為:(Nmax/Nu)y=3.4 m > (Nmax/Nu)y=6.8 m > (Nmax/Nu)y=10.2 m。上述結果顯示,當沖刷最大深度y=3.4 m~ 6.8 m時,橋墩之沖刷效應對橋基樁筏基礎中各樁之影響程度最大。當沖刷最大深度y=6.8 m~10.4 m時,影響程度次之。而沖刷最大深度y=0 m~3.4 m影響程度最小。
以4x4橋基樁筏基礎為例,橋墩最大沉陷量(Du)與最大沖刷深度(y)之關係式可表為:Du=0.0057*y+1.54。而無因次化各基樁結構之應力關係方程式可分別表為:(Mmax/Mu) = -20.37*(Du/y)+0.72,(Vmax/Vu) = 10.17*(Du/y)+0.17及(Nmax/Nu) = 2.69*(Du/y)-0.21。

To investigate the settlement mode of bridge pier and the stress distribution of piled raft foundation subjected to scour from flow current, this study preformed a series of three-dimensional (3-D) finite element soil/structure interaction analyses using numerical tools. In which, the monitoring data of settlement of Kao-Mei Bridge due to scour was compared with those from the numerical result to verify the validity of the 3-D numerical model. The Kao-Mei Bridge located at the boundary of the Kao-hsiung County and Ping-Tung County. Eventually, incorporating with different scouring model, the piled raft foundation with various pile configurations were adopted for parametric study to establish predictive relationships of bridge pier settlement and stress distribution of piled raft foundation.
Based on the numerical results of pier settlement Du and maximum bending moment Mmax, maximum shear force Vmax, and maximum axial force Nmax of pile group subjected to a maximum scour depth y = ( 1~3 ymax), in which, ymax (=3.4 m) is the maximum allowable scour depth and their associated allowable values Mu、Vu and Nu, the following results can be given: (1) For the dimensionless maximum settlement (Du/y):(Du/y)y=6.8 m > (Du/y)y=10.2 m > (Du/y)y=3.4 m;(2) For the dimensionless maximum bending moment ratio (Mmax/Mu):(Mmax/Mu)y=6.8 m > (Mmax/Mu)y=10.2 m
URI: http://hdl.handle.net/11455/34766
其他識別: U0005-1408200921154200
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.