Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34779
標題: 廬山地滑地降雨誘發滲流及位移之數值分析
Numerical Analyses of Rainfall Induced Seepage and Movements of Lu-Shan Landslides
作者: 盧建廷
Lu, Jian- Ting
關鍵字: landslide;地滑區;existing slip surface;rainfall-induced seepage;factor of safety;displacement rate;既有滑動面;降雨滲流;安全係數;位移率
出版社: 水土保持學系所
引用: 1. 中央氣象局網站 http://www.cwb.gov.tw。 2. 交通部公路局第四區工程處洛韶工務段、新世紀技術顧問股份有限公司(2001),「台14甲線40K+800下邊坡災害保護工程委託地質鑽探報告書」。 3. 行政院農業委員會、台灣省政府農林廳水土保持局、工業技術研究院能源與資源研究所(1992),「崩塌地調查、規劃與設計手冊(地滑篇)」。 4. 行政院農業委員會及中國地質學會、陳宏宇(1999),「山上的房子」。 5. 行政院公共工程委員會、張吉佐、侯秉承、李民政等人(2002),「台灣岩體分類與隧道支撐系統之建立」。 6. 行政院農業委員會水土保持局(2003),「水土保持技術規範」。 7. 行政院農業委員會水土保持局第三工程所、黎明工程顧問有限公司(2006),「台14線88K至91K地滑地治理調查規劃工程」。 8. 行政院農業委員會水土保持局第三工程所、黎明工程顧問有限公司(2007),「廬山地滑監測及後續治理規劃」。 9. 行政院農業委員會水土保持局、國立中興大學水土保持系(2008),「降雨誘發土砂災害之危險度評估及影範圍研究」。 10. 李德河(1984),「邊坡破壞時刻之預測」,地工技術,第7期,7-12。 11. 林炳森(1991),「崩積土坡力學性質及穩定性研究」,行政院國家科學委員會防災科技研究報告,79-64號。 12. 林進國(2003),「降雨和地下水位變化之關聯性分析」,國立成功大學水利及海洋工程研究所碩士論文。 13. 林群富、陳水龍、吳建興、羅曉萍(2005),「有限元素法與極限平衡法在九份邊坡之分析」,第11屆台灣大地工程研討會,C18。 14. 林德貴、黃伯舜、蘇苗彬(2005),「以數值分析方法再論林肯大郡坡地破壞」,中華水土保持學報,36(3):215-232。 15. 林德貴、陳啟天、徐森彥、蘇苗彬(2007),「梨山地滑區降雨滲流及穩定性分析」,中華水土保持學報,39(4):419-451。 16. 林德貴、盧建廷、王晉倫、黃貞凱(2008),「廬山地滑地降雨期間位移率與穩定性安全係數之關係」,中華水土保持學會年會論文集,摘要:75-76 (論文全文網址:中華水土保持學會http://www.cswcs.org.tw)。 17. 洪如江(1979),「地工技術在台灣山崩中之應用」,邊坡穩定與坍方研討會論文專集,中國土木水力工程學會,147-172。 18. 范嘉程、馮道偉(2003),「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,61-74。 19. 胡毓港、楊長義(2005),「山坡地崩塌因子之評分權重」,第11屆台灣大地工程研討會,C09。 20. 陳世芳、黃清益(1979),「地層滑動及其防止對策之研究(1)」,台鐵資料月刊,186(6):1-9。 21. 陳爾義(2002),「地下水浸潤及滲流對崩積土邊坡穩定影響之探討」,國立海洋大學河海工程學系研究所碩士論文。 22. 張國欽(2005),「邊坡在降雨入滲狀況下之穩定性分析與評估」,國立中興大學水土保持學系研究所碩士論文。 23. 黃振全、黃貞凱、黃祥慶、顏呈仰(2008),「南投廬山溫泉滑動邊坡地質調查案例介紹」,地工技術,第117期。 24. 廖洪鈞等(2005),「分階式山區道路邊坡崩塌預測模式之建立研究-以阿里山公路為例」,第11屆台灣大地工程研討會,C12。 25. 鄧鳳儀(2005),「地滑地區滲流及地下排水工法對邊坡穩定影響之數值模擬-以梨山地滑區為例」,國立中興大學水土保持學系研究生碩士論文。 26. 鄭順隆(2006),「崩塌地降雨-入滲-滲流機制之數值模擬及穩定性分析」,國立中興大學水土保持學系研究所碩士論文。 27. 謝忠和(2009),「邊坡工程分析參數之最佳化及敏感度分析」,高苑科技大學路工技術研究所碩士論文。 28. 羅偉、楊昭男、劉佳玫、郭人瑋(2007),「臺灣中央山脈能高越嶺路沿線岩石劈理形態之初步研究」,資源與環境學術研討會,花蓮。 29. 申潤植(1989),「地すベリ工學-理論と實踐」,山海堂。 30. 渡正亮(1976),「すべリやすい地すべリ防止技術」,地すべり技術,8(1)。 31. 渡正亮、小橋澄治(1987),「地すべリ.斜面崩壞の予知と對策」,山海堂。 32. Anderson, S.A., and Sitar, N., 1995. Analysis of Rainfall-Induced Debris Flow, Journal of Geotechnical Engineering, ASCE, Vol.121, No7, pp. 544-552. 33. Arya, L.M., and J. F. Paris., 1981. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Society of America Journal, Vol 45. pp: 1023-1030. 34. Aubertin, M. Mbonimpa, B. Bussiere, and R. P. Chapuis., 2001. A physically-based model to predict the water retention curve from basic geotechnical properties. Submitted to the Canadian Geotechnical Journal for publication. 35. Brace, W. F. and Riley, D.K., 1972. Static uniaxial deformation of 15 rocks to 30 kb, Int. J. Rock Mech. and Mining Sci., Vol. 9, pp. 271-288. 36. Brace, W. F., Walsh, J. B., and Frangos, W. T., 1968. Permeability of granite under high pressure, J. Geoph. Res., Vol. 73, No. 6, pp. 2225-2236. 37. Brand, E.W., 1981, Some Thoughts on Rainfall Induced Slope Failures, Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering, pp. 373-376. 38. Brenner, R.P., Tam, H.K., and Brand, E.W., 1985, Field Stress Path Simulation of Rain-Induced Slope Failure, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Vol.2, pp. 373-376. 39. C.Rechea, S.Levasseur , R. Finno., 2008. Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics 35., pp. 331-345. 40. Clark, S. P. (ed.). 1966, Handbook of Physical Constants, Geological Society of America. Memoir 97. 41. Davis, S. N. and DeWiest, R. J. M., 1966. Hydrogeology, Wiley, New York. 42. Fredlund, D. G. and Xing, Anqing., 1994. Equations for the Soil-Water Characteristic Curve, Canadian Geotechnical Journal, Vol. 31, pp. 521-532. 43. Further Evaluation of Some Predictive Methods.. Soil Science Society of America Proceedings, Vol. 35, pp. 3-8. 44. GEO-SLOPE International Ltd. 2007, User’s Guide of SEEP/W 2007, SLOPE/W2007 and SIGMA/W 2007. 45. Green, R.E. and Corey, J.C., 1971. Calculation of Hydraulic Conductivity: A 46. Joseph E. Bowles, 1996. Foundation Analysis and Design (Fifth Edition), The McGraw-Hill Companies, Inc. 47. Koukis, G. and Ziourkas, C., 1991. Slope instability phenomena in Greece:A statistical analysis, Bulletin of the International Association of Engineering Geology, Vol. 43, pp.47-60. 48. Lambe, T.W., 1973. Predictions in Soil Engineering :Thirteenth Rankine Lecture, Geotechnique, Vo1.23, No.2, pp.149-202. 49. Ledesma, 1996. A.Gens and E.E.Alonso Parameter and Variance Estimation In Geotechnical Back analysis Using Prior Information. International Journal for numerical and analytical methods in geomechanics,Vol. 20, pp.119-141. 50. Lumb, P., 1975. Slop failures in Hong Kong, Quarterly Journal of Engineering Geology, Vol.8, pp. 31-65. 51. Michele Calvello*,†, Leonardo Cascini and Giuseppe Sorbin., 2007, A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces , International Journal for Numerical and Analytical Methods in Geomechanics. 52. Michele Calvello, Richard J. Finno., 2004. Selecting parameters to optimize In model calibration by inverse analysis. Computers and Geotechnics 31., pp. 441-425. 53. Robert L. Bates and Julia A. Jackson, editors, 1987. Glossary of geology, Alexandria, Va. :American Geological Institute. 54. R.Zenter*,P.Y.Hicher,G.Moulin., 2001. Identification of soil parameters by Inverse analysis. Computers and Geotechnics 28., pp. 129-144. 55. Sidle, R.C., and Swanston, D.N., 1982. Analysis of a Small Debris Slide in Coastal Alaska, Canadian Geotechnical Journal, Vol. 19, pp. 167-174. 56. Sitar, N., Anderson, S.A., and Johnson, K.A., 1992, Conditions Leading to the Initiation of Rainfall-Induced Debris Flows, Geotech. Eng. Div. Specialty Conf.: Stability and Perf. Of Slopes and Embankments-II. ASCE, New York, pp. 834-839. 57. Snow, D. T., 1968. Rock fracture spacings, openings, and porosities, J. Soil Mechanics and Foundations Div. (ASCE), Vol. 94, No. SMI, pp. 73-92. 58. Terzaghi, K., 1950. Mechanism of landslides , In: Paige, S. (Ed.), Application of Geology to Engineering Practice (Berkey Volume), Geological Society of America, New York, pp. 83-123. 59. Van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, Vol. 44, pp: 892-898. 60. Varnes, D. J., 1978. Slope Movements and Types and Processes. In: Landslides: Analysis and Control, Transportation Research Board Nat. Ac. Sci. Washington Special Report 176, pp. 11-13. 61. Yusuke Honjo, Liu Wen-tsung, Soumitra Guha., 1994. Inverse analysis of an embankment on soft clay by extended bayesian method. International Journal for numerical and analytical methods in geomechanics, Vol.18, pp. 709-734.
摘要: 
The geological structures and hydrological conditions are extremely complicated at landslide area and it is difficult to evaluate the groundwater seepage behavior and the associated stability problems of an exsiting slip surface during rainfall by employing simplified conventional analysis method. This study performed two dimensional finite element seepage and deformation analyses on the existing slip surface along the A-A profile of Lu-Shan Landslide during torrential rainfall of Matsa Typhoon in 2005. At the mean time, incorporating with the limit equilibrium analysis the corresponding stability of the existing slip surface at each time step can be evaluated. Thruough the aforementioned analyses, the variations of groundwater level, pore water pressure, factor of safety and displacement rate of the existing slip surface at each time step of a real time rainfall can be obtained.
The reliability and validity of the proposed numerical model was verified by comparing the numerical results of groundwater variation and displacement rate of the existing slip surface along the A-A profile of Lu-Shan Landslide with those from measurements. In addition, a set of optimum numerical parmeters of alluvium which encompassed saturated hydraulic conductivity, saturated volumetric water content for seepage analyses and Youngs modulus, friction angle, cohesion, Poissions ratio and total unit weight for displacement analyses were determined by the optimization back analysis procedure of objective function.
Based on the objective function of optimization back analysis, it was found that the variation of groundwater level in seepage analyses is most sensitive to the saturated hydraulic conductivity value of alluvium and secondly followed by the saturated volumetric water content value. On the other hand, the displacement variation of soil mass is most sensitive to the Youngs modulus value in displacement analysis of rainwater infiltration, then followed by the Poissions ratio and friction angle values, whereas it is less sensitive to the total unit weight and cohesion values.
Through the time-dependent slope stability analyses during rainfall, it was found that the factor safety of the existing slip surface F(t) along the A-A profile of Lu-Shan Landslide will descend as the groundwater level uplifts and which alternately implies an increase of pore water pressure on the existing slip surface. On the contrary, the numerical results show a tendency of the recovery of the descended F(t) value when the groundwater level is drawdown and the pore water pressure on slip surface is decreasing.
Eventually, a predictive equation (or v(t)~F(t) equation) for displacement rate v(t) from factor of safety F(t) can be derived by a regression analysis. The predictive equation is capable of predicting the immediate displacement rate v(t) of the slope according to the factor of safety F(t) at each timestep t during rainfall. In such manner, the displacement rate of the exsiting slip surface of Lu-Shan Landslide can be immediately evaluated and used as a quantitative reference for landslide warning system.

地滑區之地質構造與水文條件十分複雜,採用簡化之傳統分析方法並無法評估地滑區在降雨期間之地下滲流狀態及其伴隨之穏定性問題。黎明工程顧問有限公司於廬山地滑區歷經3年之調查工作,對地滑區之地質構造分布及滑動監測資料皆建立有完整的資料庫。根據調查成果,本研究採用廬山2005年馬莎颱風降雨及地質資料,針對廬山地滑區之A-A 剖面邊坡,進行二維有限元素滲流及位移數值分析。同時,在降雨期間配合極限平衡分析法,檢核其相應之穩定性。由分析結果可求得降雨歷時中每一時間階,地滑區邊坡之地下水水位、孔隙水壓力、安全係數及位移量變化。
本文所提出數值分析模式之可靠性及有效性,可藉由廬山地滑區A-A剖面邊坡之監測資料(地下水水位及位移量)與數值分析結果之比對來獲得確認。另外,透過數值參數反算分析及最佳化程序可決定地表崩積層材料一組滲流分析最適參數輸入值(即飽和水力傳導係數、飽和體積含水量)以及位移分析最適參數輸入值(即楊氏模數、內摩擦角、凝聚力、柏松比及單位體積重)。
在廬山地滑區數值參數反算分析及最佳化程序中透過最小平方差法計算可發現,在降雨滲流分析時,地下水水位變化對地表崩積層材料之飽和水力傳導係數最敏感,而飽和體積含水量次之。此外,在降雨位移分析時,位移量變化對楊氏模數最敏感,其次柏松比與內摩擦角為局部敏感,而單位體積重及凝聚力較不敏感。
藉由邊坡穩定分析結果與孔隙水壓uw之相關性,可瞭解已知滑動面之穩定性安全係數F在地下水水位上升(即已知滑動面上之孔隙水壓uw增加)時,將導致F值下降。反之,當地下水水位下降(即已知滑動面上之孔隙水壓uw減少)時,F值則有回升之趨勢。
另外,由馬莎颱風期間之降雨滲流分析結果得知,B01監測管、B06監測管及B09監測管點位之未飽和崩積層之體積含水量有隨降雨量增加而上升之趨勢。同時可發現,崩積層之飽和度則由地表之未飽和狀態而往下深度處漸漸趨於飽和狀態。
最後,依據廬山地滑區在馬莎颱風期間之地下水水位、位移率及穩定性安全係數之串聯式分析程序,吾人可建置颱風降雨期間,地滑區邊坡之穩定性安全係數~降雨延時函數(或F(t) ~t函數)及位移率~降雨延時函數(或v(t) ~t函數)。隨之,經由迴歸分析即可決定,邊坡在降雨期間之位移率函數與穩定性安全係數函數之關係式 (或v(t)~F(t) 關係式)。此關係式可在任一降雨延時t及已知邊坡穩定性安全係數F(t)之條件下,用以推求所對應之邊坡即時位移率v(t),並作為地滑區警戒系統在發布警戒訊息時之量化參考依據。
URI: http://hdl.handle.net/11455/34779
其他識別: U0005-1708200919024300
Appears in Collections:水土保持學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.