Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34790
標題: 土~根系統剪力強度增量力學轉換模式之建立
Mechanical Conversion Model of Shear Strength Increment Due to Root in Soil~Root System
作者: 李潤威
Li, Jun-Wei
關鍵字: ultimate pull-out resistance;極限拉拔抗力;2-D numerical model;shear strength increment;mechanical conversion model;二維數值模型;抗剪強度增量;力學轉換模式
出版社: 水土保持學系所
引用: 1. 王欣俞(2006),「植生邊坡穩定性之量化評估」,國立中興大學水土保持學系碩士論文。 2. 宋熙辰(2008),「桂竹林根系特性與其引拔力學關係之研究」,國立中興大學水土保持學系碩士論文。 3. 呂錦明(1996),「竹類地下莖型態分類之探討」,現代育林,12(1):73-90。 4. 何昱昀(2004),「根系對土壤加勁效果之數值模擬」,國立中興大學水土保持學系碩士論文。 5. 吳正雄、陳信雄,(1989),「森林值生根力應用在崩塌地處理上之研究」,中華林學季刊 22(4):3-19。 6. 吳正雄,(1990),「崩塌地優勢草本植物根力特性之研究」,中華水土保持學報,21(1):27-54。 7. 吳正雄、陳信雄(1991),「台灣衫根力與坡面穩定關係之研究」,中華林學季刊,24(1):27-40。 8. 吳正雄(1993),「樹根力與坡面穩定關係之研究」,中華水土保持學報24(2):23-37。 9. 阿部和時(1996),「由現地直接剪力試驗探討根系抑制坡面崩壞效果之研究」 (日文),日本綠化工學會誌,22(2):95-108。 10. 林信輝(1995),「山鹽菁與山水柳在石灰石礦區之生長與根力特性之研究」,水土保持學報,27(1):88-99。 11. 林信輝、高齊治(1999),「西南部泥岩地區刺竹根力特性之研究」,中華水土保持學報,30(1):1-12。 12. 林信輝(2001),「水土保持植生工程」,高立圖書公司。 13. 林信輝、陳意昌、張俊斌、孫明德(2004),「美洲闊苞菊根株拉拔抗力推定模式之研究」,農林學報,53(4): 293-306。 14. 林信輝、楊宏達、陳意昌(2005),「九芎植生木樁之生長與根系力學之研究」,中華水土保持學報,36(2): 123-132。 15. 林德貴、黃伯舜、林信輝(2005),「植生工程根系力學-調查與試驗」,地工技術,104: 87-102。 16. 林德貴、黃伯舜、林信輝(2006),「土~根系統之力學模式及試驗分析」,中華水土保持學報,37(2):157-172。 17. 林德貴、黃伯舜、林信輝(2007),「以等值單列直根模型進行含根邊坡穩定性之量化評估」,中華水土保持學報,38(1):15-29。 18. 林德貴、黃伯舜(2008),「植生坡地土-根系統之穩定性量化評估」,國科會NSC96-2221-E-005-066 完整報告。 19. 林德貴、黃伯舜、林信輝(2008),「土-根系統中根系拉拔抗力與抗剪強度增量之力學轉換模式」,中華水土保持學會年會論文集,(摘要: pp.13-14) ,12月13日,國立中興大學,(論文全文網址: 中華水土保持學會 http://www.cswcs.org.tw)。 20. 林德貴、李潤威、林信輝(2008),「根系型態及其拉拔抗力行為之數值模擬」,中華水土保持學會年會論文集,(摘要: pp.45-46) ,12月13日,國立中興大學,(論文全文網址: 中華水土保持學會 http://www.cswcs.org.tw)。 21. 高齊治(1998),「西南部泥岩地區刺竹耐旱特性及其根力特性之研究」,國立中興大學水土保持學系碩士論文。 22. 林哲郎、陳世銘、蔡淇斌、鄧智應、蕭見益(1995),「草類根系力學效應之研究」,水土保持技術學報,1:61-71。 23. 陳秀婷(2006),「植根土壤剪力強度之實驗量測與數值分析」,國立中央大學土木工程研究所碩士論文。 24. 陳意昌、張俊斌、林信輝(2002),「台灣崩塌地先趨植物根力模式分析」,海峽兩岸山地災害與環境保育研究第三卷,pp.413-419。 25. 張俊斌、林信輝(1995),「中橫崩塌地優勢植物根力特性之研究」,中華水土保持學報26(4):235-243。 26. 陳彥璋、陳偉堯譯(2005),「坡地生態工法:坡地植生工程理論與實」,明文書局,臺北。 27. 陳明義、謝杉舟(1993),「海岸沙丘植物根系模式與定砂功能之研究(二) 」,防風林營造,pp.1-11。 28. 張俊斌(1995),「中橫崩塌地優勢植物植生特性與其根力之研究」,國立中興大學水土保持學研究所碩士論文。 29. 張敬昌(2002),「山坡地檳榔根力試驗研究」,水土保持學報,34(4):249-260。 30. 許家賓(2008),「植物(黃槿、野桐、苦楝)根系型態對土壤剪力強度增量的影響」,國立高雄第一科技大學營建工程系碩士論文。 31. 黃伯舜(2005),「含根土互制行為數值模擬」,國立中興大學水土保持學系碩士論文。 32. 經濟部水利署北區水資源局,2007,「石門水庫集水區崩塌地植生工程與應用植物手冊」。 33. 蔡光榮,(1994),「台灣西南部泥岩地區植生護坡之根系力學模式應用性探討」,地工技術雜誌 48:49-61。 34. 賴俊帆(2007),「桂竹根系拉拔試驗及其坡面之穩定性評估」國立中興大學水土保持學系研究所碩士論文。 35. 顏正平(1973),「水土保持植物根系分佈基本型態調查」,中華水土保持學報,4(1):65-84。 36. 顏正平(1974),「水土保持木本植物根系分佈類型研究」,中興大學農學院水土保持學系印行。 37. 顏正平(2000),「根系型在水土保持適用效能之研究」,水土保持植生工程研討會論文,pp.127-137。 38. 顏正平(2004),「樹木之地下世界—植物根系分布類型之研究」,博學。 39. Abe, K., 1991. Estimation of Reinforced Shear Resistance of Rooted Soil by Pull-out Resistance of the Roots. J. Jpn. Soc. Reveget. Tech. 16(4), 37-45. 40. Böhm, W., 1979. Methods of study root system, Springer-Verlag Berlin Heidelberg New York. 41. Das, B.M., 2002. Principles of Geotechnical Engineering (Fifth Edition), Brooks/Cole, a division of Thomson Learning, Inc. 42. Dupuy, L., Fourcaud, T., Stokes, A., 2005. A numerical investigation into factors affecting the anchorage of roots in tension. European Journal of Soil Science 56, 319-327. 43. Ekanayake, J.C., Phillips, C.J., 1999. A Method for Stability Analysis of Vegetated Hillslopes: An Energy Approach, Can. Geotech. J. 36, 1172-1184. 44. Ekanayake, J.C., Phillips, C.J., Marden, M., 2004. A Comparison of Methods for Stability Analysis of Vegetated Slopes. Ground and Water Bioengineering for Erosion Control and Slope Stabilization, Science Publisher, Inc., pp.171-181. 45. Genet, M., Kokutse, N., Stokes, A., Fourcaud, T., Cai, X., Ji, J., Mickovski, S., 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. Forest Ecology and Management 256, 1517-1526. 46. Gray, D.H., Megaham, W.F., 1981. Forest vegetation removal and slope stability in the Idaho batholith. Intermountain forest and range exprement station research paper int-271, Forest service U.S. 47. Gray, D.H., Sotir, R.B., 1996. Biotechnical and soil bioengineering- Slope stabilization. John Wiley & Sons,Inc. 48. Kolesnikov, V.A., 1971, The root system of fruit plants, Moscow, USSR, Mir Publishers, p269. 49. SOperstein, V., Frydman, S., 2000. The Influence of Vegetation on Soil Strength. Ground Improvement 4, 81-91. 50. Operstein, V., Frydman, S., 2001. Numerical simulation of direct shear of root-reinforced soil. Ground Improvement 5, 41-48. 51. Operstein, V., Frydman, S., 2002. The Stability of Soil Slopes Stabilised with Vegetation, Ground Improvement 6, 163-168. 52. PLAXIS (1998) , User’s Mannual Version 7.1. 53. PLAXIS (2002) , User’s Mannual Version 8.1. 54. Pytel, A.,Kiusalaas, J., 2003. Mechanics of Materials, Brooks/Cole, a division of Thomson Learning, Inc. 55. Ryuichi, Y., Norio, Y., Kinutada, Y., 1996. Stability analysis of slope reinforced by roots network. Earth Reinforcement, Balkema, Rotterdam, pp.835-840 56. Wilde, S.A., 1958. Forest Soils : Their protection and relation to silviculture. New York, Ronald Press. pp.537. 57. Waldron, L.J., 1977. The shear resistance of root-permeated homogeneous and stratified soil. Soil SCI. SOC. AM. J. 41, 843-849. 58. Waldron, L.J., Dakessian, S., 1981. Soil reinforcement by root : calculation of increased soil shear resistance from root properties. Soil Science 132(6), 427-435. 59. Wu, T.H., 1976. Investigation of Landslides on Prince of Wales Island. Geotechnical Engineering Report 5. Civil Engineering Department, Ohio State University, Columbus, Ohio, USA. 60. Wu, T.H., McKinnell, W.P. III, Swanston, D.N., 1979. Strength of tree roots and landslides on Prince of Wales Island. Alaska. Can. Geotech.J. 16(1), 19-33. 61. Wu, T.H., McOmber, R.M., Erb, R.T., Beal, P.E., 1988a. Study of Soil-Root Interaction. J. of Geotechnical Engineering 114(12), 1351-1375. 62. Wu, T.H., Beal, P.E., Lan, C., 1988b. In-Situ Shear Test of Soil-Root Systems. J. of Geotechnical Engineering 114(12), 1376-1394. 63. Wu, T.H., 1994. Slope Stabilization Using Vegetation. Geotechnical Engineering Emerging Trends in Design and Practice. pp.377~402. 64. Wu, T.H., Watson, A., 1998. In situ shear test of soil blocks with roots. Can. Geotech. J. 35 (4), 579-590. 65. 苅住 曻(1987),新裝版樹木根系圖說。誠文堂新光社。
摘要: 
In this study, two dimensional (2-D) finite element numerical simulations were carried out on the pull-out resistance and the shear strength of soil/root system of Indiacharcial trema. Based on the field investigations of Indiacharcial trema root morphology, one can establish a 2-D numerical model of soil/root system to simulate the pull-out test at field site. Through the comparison of simulated pull-out mechanical behaviors with those from measurements, the effectiveness of the proposed 2-D numerical procedures can be verified.
It was indicated the simulated pull-out resistance versus pull-out displacement curve (or P~Lp curve) and the ultimate pull-out resistance Pu are in good agreement with those from measurement. Subsequently, a 2-D numerical model of soil/root system identical with the pull-out test was repeatedly used for the simulation of direct shear test to estimate the shear strength increment ΔSr resulted from root system.
Eventually, using the numerical results of Pu and ΔSr values, a mechanical relationship between Pu and ΔSr (orΔSr=f(Pu) function) for soil/root system are proposed. The relationship offers the stability analysis of vegetated slope a convenient mechanical conversion model which enables a direct transformation of pull-out resistance into shear strength increment of root system and an immediate application to 2-D slope stability analysis. As a result, to establish an individual ΔSr=f(Pu) function for various plant roots using the large quantity of existing data bank from in-situ pull-out test in near future, it is suggested to regard the proposed working procedures as a practical and useful reference example.

本文選用山黃麻(Indiacharcial trema)根系進行含根土拉拔抗力及抗剪強度之二維有限元素數值模擬。依據山黃麻現地調查之根系形態,吾人可建構含根土之二維數值模型並進行現地根系拉拔抗力試驗之數值模擬。透過現地拉拔抗力試驗值與模擬值之比對,可驗證所提數值程序之有效性。
在比對根系拉拔抗力試驗之拉拔抗力~拔出量關係曲線(P~Lp曲線)及極限拉拔抗力值Pu後,得知數值模擬結果與實際量測成果之吻合度相當良好。隨之,再採用與拉拔抗力試驗相同之含根土數值模型,進行含根土之直接剪力試驗數值模擬,並推估含根土之抗剪強度增量值ΔSr。
最後,採用Pu與ΔSr之數值模擬成果,即可建置根系極限拉拔抗力Pu與相應之土~根系統抗剪強度增量ΔSr之力學關係式,即ΔSr=f(Pu)關係函數。此關係函數,在植生邊坡穩定性分析上提供了一套方便之根系力學轉換模式,其將根系拉拔抗力試驗成果直接轉換為根系抗剪強度增量,將可運用於植生邊坡之二維穩定性分析上。因此,在未來針對不同植生植物根系既有之大量現地拉拔抗力試驗資料庫,來建置不同根系之各別ΔSr=f(Pu)關係函數時,本研究所提之轉換模式之作業程序,將可作為一相當實用之參考範例。
URI: http://hdl.handle.net/11455/34790
其他識別: U0005-1908200918012300
Appears in Collections:水土保持學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.