Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34792
標題: 環境指標應用於崩塌地植生復育之研究
Application of Environmental Indices on the Vegetative Restoration of Landslides
作者: 莊智瑋
Chuang, Chin-Wei
關鍵字: Environmental Indices;環境指標;Landslide;Vegetative Restoration;Lanscape indices;Markov Chain Model;崩塌地;植生復育;地景指數;馬可夫鏈模式
出版社: 水土保持學系所
引用: 一、中文部分 1.丁志堅(1997),「運用馬可夫鏈模式度量土地利用變遷之研究」,台灣大學地理學系碩士論文。 2.工業技術研究院能源與資源研究所(1992),「崩塌地調查、規劃與設計手冊」,p.1。 3.孔德懷(2005),「崩塌地特性變遷偵測之探討-以清水溪集水區之六期影像應用為例」,國立中興大學水土保持學系碩士論文。 4.方琮雅(2001),「桃園台地水域用地空間結構變遷之研究」,台灣大學農業工程學系碩士論文。 5.王文能、尹承遠、陳志清、李木青(2000),「九二一地震崩塌地的分佈與特性」,第二屆海峽兩岸山地災害與環境保育學術研討會論文集,p.223-233。 6.王慈憶、陳建璋、陳朝圳(2006),「以SPOT衛星影像探討淡水河紅樹林自然保留區植生指標之變化」,作物、環境與生物資訊,3(3):229-238。 7.王義仲、黃曜謀、林志欽(2004),「陽明山國家公園人工林植群變遷」,國家公園學報,14(1):11-23。 8.田慶久、閩祥軍(1998),「植被指數研究進展」,地球科學進展,13(4):327-333。 9.石同芬(1992),「崩塌規模和坡向、坡度的關係及圖示」,國立臺灣大學森林學系碩士論文。 10.江良印(1998)「紋理特徵應用於遙測影像判釋之理論研究」,國立台灣大學農業工程學系碩士論文。 11.江凱偉(1997),「小波分解輔助影像紋理區之分塊」,國立成功大學測量工程研究所碩士論文。 12.朱子偉(2006),「層級分析法與模糊層級分析法於山坡地生態及災害綜合指標權重分析」,國立台北科技大學土木與防災研究所碩士論文。 13.行政院農業委員會水土保持局(2005),「水土保持手冊-工程篇」。 14.吳守從(2003),「南仁山生態保護區森林植群動態變化及其經營管理策略之探討」,國立台灣大學森林學系博士論文。 15.吳守從(2006),「應用SPOT衛星影像結合植生指標與地景指數評估墾丁國家公園各景點生態環境壓力」,觀光研究學報,12(3):207-224。 16.吳守從、陳永寬(2004),「應用數位航測技術探討南仁山生態保護區林分高生長量」,航測及遙測學刊,9(4):21-34。 17.吳佐川(1993),「台灣地區崩塌地區域特性之研究」,國立台灣大學森林學系碩士論文。 18.吳治達、鄭祈全(2005),「應用航測資料與數學模式監測民墾地變遷之研究」,航測及遙測學刊,10(4):373-384。 19.吳柏毅(2005),「台灣中部地區崩塌地影響因子之分析研究」,國立中興大學土木工程學系碩士論文。 20.呂秀慧(2001),「頭前溪流域植生覆蓋變遷之研究」,國立交通大學土木工程學系碩士論文。 21.宋和禧(1999),「和社溪流域山崩地的分布及其變遷之研究」,國立臺灣師範大學地理學系碩士論文。 22.宋軒、石端曉、張學雷、鄭明星(2008),「基於元胞自動機的鄭州市區土地利用變化研究」,河南科學,26(8):971-976。 23.李建堂、鄭育斌、邱文良、林則桐、陳建文、王儀臻(2002),「關渡自然保留區1986-1998植群變遷」,臺灣林業科學,17(1):41-50。 24.李載鳴、王中原、卓子右(2003),「雲林沿海平原植群組成之長期動庇變遷研究」,華岡農科學報,11:43-60。 25.李載鳴、郭秀珮(2004),「澎湖島海岸防風林植群林生態監測」,華岡農科學報,13:75-94。 26.李錦育(1988),「水庫集水區崩塌地危險度定量化之研究」,工程環境會刊,9:7-19。 27.沈育佳(1998),「都會空載多譜掃瞄影像紋理分析之研究」,中興大學土木工程學系碩士論文。 28.卲泰璋(1999),「類神經網路於多光譜影像分類之應用」,國立交通大學土木工程學系碩士論文。 29.周天穎、雷祖強、陳駿賢(2003),「遙測及景觀分析技術於崩塌地判釋與變遷之研究」,中華水土保持學報,34(4):353-368。 30.周強(2009),「灰色馬爾可夫鏈預測模型對我國能源需求量的預測」,重慶科技學院學報,11(3):179-182。 31.周稟珊、魏正岳、沈淑敏、李錦發、張瑞津、劉盈劭、林雪美(2004),「應用數值航測系統判釋納莉颱風後林口台地崩塌地之分布」,第十屆台灣之第四紀暨台北盆地環境變遷研討會,p.88-90。 32.林于尊(2000),「農地重劃景觀生態變遷之研究」,台灣大學農業工程學系碩士論文。 33.林文賜(2009),「應用GIS及RS技術於震災崩塌地監測之研究」,水保技術,4(3):165-171。 34.林文賜、林昭遠、周文杰、黃碧慧(2007),「921 震災崩塌地景變遷監測之研究-以九九峰為例」,明道學術論壇,3(1):189-200。 35.林文賜、黃碧慧、林昭遠、周文杰(2004),「921震災崩塌地特性分析及變遷監測之研究」,中華水土保持學報,35(2):141-149。 36.林文賜(2002),「集水區空間資訊萃取及坡面泥砂產量推估之研究」,國立中興大學水土保持學系博士論文。 37.林金樹(1996),「遙測資訊在生態環境變遷監測上應用之研究-以台南地區為例」,國立台灣大學森林學系博士論文。 38.林信志、張秤嘉、吳瑞千、王玲玲、楊熙年(2001),「以色彩、紋理、和外形為內容之影像擷取方法」,電腦學刊,13(4):30-43。 39.林昭遠(2000),「集水區地型因子自動萃取之研究-土石流危險溪流判釋之用」,中華水土保持學報,31(1):81-91。 40.林昭遠、王祥帆、莊智瑋(2006),「應用生態指標探討九份二山崩塌地植生復育變遷之研究」,水土保持學報,38(3):279-286。 41.林昭遠、吳瑞鵬、林文賜(2001),「921震災崩塌地植生復育監測與評估」,中水土保持學報,32(1):59-66。 42.林昭遠、莊智瑋(2009),「921地震崩塌地特性及變遷監測分析」,921地震對生態影響與回復研討會,p.11-32 43.林美聆、陳榮河(2000),「坡地破壞探討」,九二一集集大地震大地工程震災調查報告,p.1-33。 44.林淑媛(2003),「地形地質均質區劃分與山崩因子探討」,國立中央大學應用地質研究所碩士論文。 45.林裕彬、曾正輝、鄧東波(2002),「景觀生態指數於集水區整體景觀時空間結構型態探討」,農業工程學報,48(1):64-81。 46.林裕彬、鄧東波、吳振發(2002),「景觀生態計量方法於農業景觀生態系統之空間結構探討」,農業工程學報,47(2):74-91。 47.林榮章(1999),「都會區多解像力遙測影像之紋理分析」,中興大學土木工程學系碩士論文。 48.施明元(1995),「台中市土地利用空間發展之研究」,逢甲大學土地管理學系碩士論文。 49.洪如江(1999),「坡地災害防治」,臺北市:行政院國家科學委員會,p.22-23。 50.徐嵐(1999),「景觀網絡結構的幾個問題」,景觀生態學:理論、方法及應用,地景觀企業股份有限公司,p.225-230。 51.徐嵐、趙羿(1993),「利用馬爾柯夫過程預測東陵區土地利用格局的變化」,應用生態學報,4(3):272-277。 52.莊智瑋、林昭遠(2007),「以植生指標探討九份二山崩塌地植生變遷之研究」,中華水土保持學會96年年會論文發表,p.51-52 53.莊智瑋、林昭遠(2009),「利用紋理因子改善影像分類準確度之研究」,水土保持學報,41(2):153-168。 54.許煜煌(2002),「以不安定指數法進行地震引致坡地破壞模式分析」,國立臺灣大學土木工程學系碩士論文。 55.游伯龍(1985),「行為與決策,知己知彼的基礎與應用」,中央研究院經濟研究所,p.408。 56.翁珮怡、張俊彥,(2002),「景觀生態結構影響居民對綠地認知之探討」,造園景觀與環境規劃設計研究成果研討會,p.53-54。 57.康恬慎(2001),「石門水庫集水區不同時期崩塌地調查成果分析」,國立台灣大學森林學系碩士論文。 58.張子瑩、徐美玲(2004),「暴雨與地震觸發崩塌發生區位之比較以陳有蘭溪流域為例」,地理學報,35:1-16。 59.張石角(1987),「山坡地潛在危險之預測及其在環境影響評估之應用」,中華水土保持學報,18(2):41-62。 60.張石角(1992),「台灣各地質分區邊坡崩坍類型及其預測方法(一)-技術轉移講習班講義」,台灣大學地理學系,p.49-111。 61.張石角(2004),「特殊地質區與土石災害問題」,坡地防災創新研發成果研討會論文集,p.85-92。 62.張俊斌(2004),「泥岩地區景觀生態結構與變遷之研究」,國立中興大學水土保持學系博士論文。 63.張尊國(2001),「農地重劃景觀生態變遷之研究」,國立臺灣大學農業工程學系碩士論文。 64.郭立穎(1997),「紋理分析於洋香瓜糖度上之應用」,台灣大學農業機械工程學系碩士論文。 65.郭秀玲(2003),「紋理分析於農地利用判釋之研究-以苗栗縣大湖鄉為例」,逢甲大學土地管理學系碩士論文。 66.郭晉平(2001),「森林景觀生態研究」,北京大學出版社,p.1-74。 67.陳玉峰(2002),「臺中港漁港暨濱海遊憩區植被變遷調查報告」,臺灣人文生態研究,4(1):153-184。 68.陳孟宏(2006),「應用馬可夫鏈模式探討綠島地景變遷研究」,屏東科技大學農村規劃系碩士論文。 69.陳信雄(1995),「崩塌地調查與分析」,渤海堂出版社。 70.陳冠字(2002),「紋理分析在彩色影像分類上之應用」,中華大學機械與航太工程學系碩士論文。 71.陳思仁(2007),「內政部數值地形模型建置現況及加值應用」,國土資訊系統通訊,61:2-14。 72.陳述彭、趙英時(1992),「遙感地學分析」,中國文化大學出版部。 73.陳益凰(1998),「應用多時段衛星影像辨識水稻田之研究」,國立成功大學測量工程學系碩士論文。 74.陳添水(2005),「應用地理資訊系統於九九峰九二一地震崩塌分析」,特有生物研究,7(1):69-87。 75.陳順宇(1998),「多變量分析」,華泰書局。 76.陳意昌(2004),「農地重劃地區土地利用與景觀變遷之研究」,國立中興大學水土保持學系博士論文。 77.陳繼藩(1992),「SPOT 衛星影像空間(紋理性)與光譜特性相結合之土地分類法」,行政院國家科學委員會專題研究計畫成果報告。 78.傅桂霖(2004),「衛星影像紋理分析在山坡地監測管理之應用」,國立中興大學水土保持學系碩士論文。 79.傅粹馨(2002),「主成份分析和共同因素分析相關議題之研究」,教育與社會研究,3:107-132。 80.馮豐隆、黃志成(1997),「惠蓀林場土地利用之地景排列和變遷」,中華林學季刊,30(4):387-400。 81.黃志成(1997),「惠蓀林場土地利用之地景排列和變遷」,中華林學季刊,30(4):387-400。 82.黃金聰(2000),「計算影像紋理以提供分類輔助之研究」,行政院國家科學委員會專題研究計畫成果報告。 83.黃俊仁(2008),「崩塌地植生復育與景觀變遷之研究」,國立中興大學水土保持學系博士論文。 84.黃國楨、王韻皓、焦國模(1996),「植生指標於SPOT 衛星影像之研究」,臺灣林業,22(1):45-52。 85.黃凱易、張偉顗(1997),「SPOT 衛星影像分析應用於林地被覆變遷偵測」,中華林學季刊,30(1):55-70。 86.黃筱梅(2001),「SPOT 衛星影像於裸露地變遷之偵測研究—以和社地區為例」,國立臺灣大學森林學系碩士論文。 87.楊志維(2001),「衛星遙測與灰系統理論應用於水稻營養生長期之監測」,國立臺灣大學農藝學系研究所碩士論文。 88.楊剛(2004),「遙測資訊應用於墾丁國家公園地景生態變遷監測之研究」,屏東科技大學屏東科技大學森林學系碩士論文。 89.楊純明、蘇慕容(1997),「水稻族群值冠反射光譜之分析」,中國農業氣象學,4(2):87-95。 90.楊智堯(1998),「類神經網路於邊坡破壞潛能分析之應用研究」,成功大學土木工程學系碩士論文。 91.葉怡成(2003),「類神經網路模式應用與實作」,儒林圖書有限公司。 92.解修平、周傑(2008),「土地利用變化預測研究-以西安地區為例」,乾旱區研究,25(1):125-130。 93.鄒國信(2001),「台北都會郊區土地利用變遷研究-以樹林市為例」,文化大學地學研究所碩士論文。 94.鄒明城、孫志鴻(2004),「資料探勘技術在集集大地震引致山崩之研究」,地理學報,36:117-131。 95.廖亞禎(2002),「校園土地利用之地景變遷-以中興大學台中校區為例」,國立中興大學園藝學系碩士論文。 96.廖怡雯(2003),「運用馬可夫鏈模式於台中市土地利用變遷之研究」,逢甲大學土地管理學系碩士論文。 97.廖軒吾(2000),「集集地震誘發之山崩」,國立中央大學應用地質研究所碩士論文。 98.趙羿、賴明洲、薛怡珍(2003),「景觀生態學理論與實務」,地景企業股份有限公司,p.372。 99.趙錫民(2000),「結合塔像與紋理分類之地物萃取法」,測量工程,14(2)1-22。 100.鍾玉龍、陳朝圳、奚珍妮、劉士銘(2006),「MODIS影像應用於台灣乾旱監測指標之建立」,航測及遙測學刊,11(1):39-58。 101.蔡尚悳、呂金誠、歐辰雄、李明益(2000),「惠蓀林場小出山闊葉樹次生林植群之生產力與歧異度分析」,林業研究季刊,22(1):51-62。 102.蔡榮得、沈育佳(1999),「空載多光譜影像之紋理分析」,興大工程學刊,10(3):95-104。 103.蔡靜如(1998),「台北盆地土地利用變遷趨勢之研究」,中興大學都市計畫研究所碩士論文。 104.衛強(2006),「以多期遙測衛星影像監測臺大實驗林溪頭營林區三處崩塌地災害」,臺灣大學生物資源暨農學院實驗林研究報告,20(1):1-12。 105.鄭祈全、吳治達、王素芬(2005),「應用Markov 和Logit 模式監測地景變遷之研究」,台灣林業科學20(1):29-36。 106.鄭祈全、吳治達、莊永忠(2007),「土地利用變遷與氣候變遷對集水區流量模擬影響之研究-以林試所蓮華池試驗林之蛟龍溪集水區為例」,臺灣林業科學22(4):483-495。 107.鄭祈全、許立達、賴玉菁(2001),「應用地理資訊系統監測森林地景變遷之研究」,台灣林業科學,16(1):1-9。 108.鄭祈全、詹進發、許立達(1999),「應用碎形維度監測森林地景結構與變遷之研究」,台灣林業科學,14(4):397-407。 109.鄭敏、庾思慧(2009),「香港未來30年間的土地利用變化趨勢預測」,安徽農業科學,37(6):2648-2650。 110.鄭嘉盈(1999),「遙測在坡地災害評估之應用研究」,國立成功大學土木工程學系碩士論文。 111.鄧國禎(2001),「鯉魚潭水庫集水區地景變遷之研究」,台灣大學森林學系碩士論文。 112.黎瑋(1998),「紋理分析於遙測影像分類之研究」,中央大學土木工程學系碩士論文。 113.蕭國鑫(1998),「多時遙測光學與雷達資料於水稻田辨釋之研究」,國立交通大學土木工程學系碩士論文。 114.蕭國鑫、尹承遠、劉進金、遊明芳、王晉倫(2003),「SPOT 影像與航照資料應用於崩塌地辨識之探討」,航測及遙測學刊,8(4) : 29-42。 115.薛怡珍、李國忠、邱祈榮、賴明洲(2003),「台大實驗林森林地景動態監測-以和社地區為例」,生態系經營-永久樣區理論與實務探討研討會論文集,p.85-96。 116.劉施敏(2008),「石門水庫集水區治理決策支援系統建置與策略研擬」,國立臺灣大學工學院土木工程學系碩士論文。 117.歐陽元淳(2003),「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,國立台灣大學地理環境資源學系碩士論文。 118.謝邦昌(1999),「SAS系統在統計分析上之應用」,網路應用暨套裝軟體研討會課程講義,p.1-5。 119.謝清祿、鄭聖夫、林達德(1997),「應用影像紋理分析及類神經網路辨識甘藍種苗之生長階段」,農業機械學刊,6(2):1-13。 120.謝漢欽(1998),「應用SPOT衛星影像與地理資訊系統於林地土地利用型綠度分析」,台灣林業科學,11(1):77-86。 121.簡甫任(2001),「運用知識庫輔助遙測影像分類與土地利用變遷偵測模式建立之研究─以都市區域環境為例」,逢甲大學土地管理學系碩士論文。 122.簡炯欣、馮豐隆(2002),「關刀溪長期生態試驗地之地景格局代表性分析」,特有生物研究,4(1):75-85。 123.羅家強(1988),「航照判釋應用於桃園市土地利用變遷之研究—台灣都市化地區個案研究」,中國文化大學地學研究所碩士論文。 124.羅時凡、魏浚紘、李崇誠、陳朝圳(2009),遙測技術應用於溪頭地區柳杉人工林之森林健康調查,林業研究季刊,31(1):37-54。 125.蘇苗彬、陳毅輝、方俊傑(2009),「應用不安定指數法於坡地崩塌之潛勢分析」,水保技術,4(1):9-23。 二、英文部分 1.Aaviksoo, K. (1993), “Changes of plant cover and land use types(1950’s to 1980’s)in three mire reserves and their neighborhood in Estonia,” Landscape Ecology, 8(5):287-301. 2.Acevedo, M. F., D. L. Urban, and H. H. Shugart (1996), “Models of forest dynamics based on roles of tree species,” Ecological Modeling, 87:267-284. 3.Anderson, T. W. (1963), “Asymptotic theory for principal component analysis,” Annals of Mathematical Statistics, 34(1):122-148. 4.Aspinall, R., and D. Pearson (2000), “Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modeling and GIS,” Journal of Environmental Management, 59:299-319. 5.Baker, W. L. (1989), “A review of models of landscape change,” Landscape Ecology, 2(2):111-133. 6.Baret, F., G. Guyot, and D. Major (1989), “TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation,” 12th Canadian symposium on remote sensing and IGARSS''90, Vancouver, Canada, p.1355-1358. 7.Bezdek, J. C. (1981), “Pattern recognition with fuzzy objective function algorithms,” Plenum Press, New York. 8.Brown, L., J. M Chen, S. G. Leblanc, and J. Cihlar (2000), “A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests. An image and model analysis,” Remote Sensing of Environment, 71:16–25. 9.Buf, D., J. M. H., M. Kardan, and M. Spann, (1990), “Texture feature performance for image segmentation,” Pattern Recognition, 23:291-309. 10.Bunkei, M., and T. Masayuki (2002), “Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia,” Remote Sensing of Environment, 81(1):58-66. 11.Burbon, A., and J. C. Bathurst (1998), ”Physically based modeling of shallow landslide sediment yield at a catchment scale,” Environmental Geology, 35:88-99. 12.Burgan, R. E., and R. A. Hartford (1993), “Monitoring vegetation greenness with satellite data,” USDA Forest Service Intermountain Research Station General Technical Report INT-297. 13.Byrne, G. F., P. F. Crapper, and K. K. Mayo (1980), “Monitoring land-cover change by principal component analys of multitemporal Landsat data,” Remote Sensing of Environment, 10:175-84. 14.Cattell, R. B. (1966), “The scree test for the number of factors,” Multivariate Behavioral Research, 1(2):245-276. 15.Chang, K. J., A. Taboada, M. L. Lin, and R. F. Chen (2005), “Analysis of landsliding by earthquake shaking using a block-on-slope thermo-mechanical model: Example of Jiufengershan landslide, central Taiwan,” Engineering Geology, 80:151–163. 16.Chen, L. (2003), ”A study of applying genetic programming to reservoir trophic state evaluation using remote sensor data,” International Joural of Remote Sensing, 24(11):2265-2275. 17.Choudhury, B. J. (1994), “Synergism of multispectral satellite observations for estimating regional land surface evaporation,” Avenue of the Americas, 49:264-274. 18.Cihlar, J., St. L. Laurent, and J. A. Dyer (1991), “Relation between the normalized difference vegetation index and ecological variables,” Remote Sensing of Environment, 35:279-298. 19.Collins, R. J., and G. W. Barrett (1997), “Effects of habitat fragmentation on meadow vole (Microtus pennsylvanicus) Population dynamics in experiment landscape patches”, Landscape ecology, 12(2):63-76. 20.Congalton, R. G. (1991), “A review of assessing the accuracy of classifications of remotely sensed data,” Remote Sensing of Environment, 37:35-46. 21.Conners, R. W., and C. A. Harlow (1980), “Toward a structural texture analyzer based on statistical method,” Computer Graphic and Image Processing, 12:224-256. 22.Conners, R. W., and C. A. Harlow (1980), “A theoretical comparison of texture algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(3):204-222. 23.Coppin, P. R., and M. E. Bauer, (1996), “Digital change detection in forest ecosystems with remote sensing imagery,” Remote Sensing Reviews, 13:207-234. 24.Crippen, R. E. (1990), “Calculating the vegetation index faster,” Remote Sensing of Environment, 34:71-73. 25.Cushman, S. A., and D. O. Wallin, (2000), “Rates and patterns of landscape change in the central Sikhote-alin Mountains Russian Far East,” Landscape Ecology, 15:643-659. 26.Cushman, S. A., and D. O. Wallin (2002), “Separating the effects of environmental, spatial and disturbance factors on forest community structure in the Russian Far East,” Forest Ecology and Management, 168(3):201-215. 27.Deering, D. W., and J. W. Rouse (1975), “Measuring forage production of grazing units from Landsat MSS data,” Proceedings, 10th International Symposium on Remote Sensing of Environment, Vol. 2, p.1169-1178. 28.Drimbarean, A., and P. F. Whelan (2001), “Experiments in colour texture analysis,” Pattern Recognition Letters, 22:1167-1167. 29.Dymond, J.R., M. R. Jessen, and L. R. Lovell (1999), “Computer simulation of shallow landsliding in New Zealand hill country,” International Journal of Applied Earth Observation and Geoinformation, 1(2): 122-131. 30.Elvidge, C. D., and Z. Chen (1995), “Comparison of broad-band and narrow-band red and near-infrared vegetation indices,” Remote Sensing of Environment, 54:38-48. 31.Fahrig, L., and G. Merriam (1985), “Habitat patch connectivity and population survival,” Ecology, 66:1762-1768. 32.Fernandez, C. I., T. F. D. Castillo, R. E. Hamdouni, and J. C. Momtero (1999), “Verification of landslide susceptibility mapping: a case study,” Earth Surface Processes and Landforms, 24:537-544. 33.Fisher, R. A. (1936), “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, 7:179-188. 34.Foody, G. M.,and D. P. Cox (1994), “Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions,” International Journal of Remote Sensing, 15(3):619-631. 35.Fookes, P. G., M. Sweeney, C. N. D. Manby, and R. P. Martin (1985), “Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain,” Engineering Geology, 21:1-152. 36.Forman, R. T. T., and M. Godron (1986), “Landscape ecology,” John Wiley and Sons, New York, p.8. 37.Freemark, K. E., and H. G. Merriam (1986), “Importance of area and habitat heterogeneity to bird assemblages in temperate forest fragments,” Biology Conservation, 36:115-141. 38.Gilabert, M. A., J. González-Piqueras, F. J. García-Haro, and J. Meliá (2002), ”A generalized soil-adjusted vegetation index,” Remote Sensing of Environment, 82:303–310. 39.Gitelson, A. A., Y. Kaufman, and M. N. Merzlyak (1996), “Use of a green channel in remote sensing of global vegetation from EOS-MODIS,” Remote Sensing of Environment, 58:289-298. 40.Goward, S. N., B. Markham, D. G. Dye, W. Dulaney, and J. Yang (1991), “Normalized difference vegetation index measurements from the advanced very high resolution radiometer,” Remote Sensing of Environment, 35:257-277. 41.Guillande, R., P. Gelugne, J. M. Arqintzeff, R. Brousse, J. Horowicz, B. Deffontaines, and J. F. Parrot (1995), “Automated mapping of the landslide hazard on the island of Tahiti based on digital satellite data,” Mapping Sciences and Remote Sensing, 32(1):59-70. 42.Gustafson, E. J., and G. R. Parker (1992), “Using an index of habitat patch proximity for landscape design,” Landscape and Urban Planning, 22:117-130. 43.Camps-Valls, G., L. Gomez-Chova, J. Calpe-Maravilla, J. D. Martin-Guerrero, E. Soria-Olivas, L. Alonso-Chorda, and J. Moreno (2004), “Robust support vector method for hyperspectral data classification and knowledge discovery,” IEEE Transactions on Geoscience and Remote Sensing, 42(7):1530-1542. 44.Han, Y. J., and J. C. Hayes (1990), “Soil cover determination by image analysis of texture information,” Transactions of the ASAE, 33(2):681-686. 45.Haralick, R. M., K. Shaunmmugam, and I. Dinstein (1973), “Textural features for image classification,” IEEE Transactions on Systems, Man and Cybernetics, SMC-3, 67:786-804. 46.Haralick, R. M., and L. G. Shapiro (1992), “Computer and robot vision” Addison-Wesley, p.28-48 47.Hotelling, H. (1933), “Analysis of a complex of statistical variables into principal components,” Journal of Educational Psychology, 24:417-441. 48.Howard, R. A. (1971), “Dynamic probabilistic systems:Semi-markov and decision processes(Vol Ⅱ),” John Wiley, New York, p.1108. 49.Huete, A. R., R. D. Jackson, and D. F. Post, (1985), “Spectral response of a plant canopy with different soil backgrounds,” Remote Sensing of Environment, 17:37-53. 50.Huete, A. R. (1988), “A soil-adjusted vegetation index (SAVI),” Remote Sensing of Environment, 25:295–309. 51.Hulshoff, R. M. (1995), “Landscape indices describing a Dutch landscape,” Landscape Ecology, 10(2):101-111. 52.Jakubauskas, M., K. P. Lulla, and P. W. Mausel (1990), “Assessment of vegetation change in a fire-altered forest landscape,” Photogrammetric Engineering and Remote Sensing, 56:371-377. 53.Janssen, L. L. F., and F. J. M. Vanderwel (1994), “Accuracy assessment of satellite derived land-cover data: a review,” Photogrammetric Engineering and Remote Sensing, 60 (4):410-432. 54.Jenerette, G. D., and J. Wu (2001), “Analysis and simulation of land-use change in the central Arizona-Phoenix region,” Landscape Ecology, 16(8):611-626. 55.Jensen, J. R. (1995), “Introductory digital image processing – a remote sensing perspective,” 2nd edition, Prentice Hall, New Jersey. 56.Johnson, R. A., and D. Wichern. (1982), “Applied multivariate statistical analysis,” Prentice Hall, New Jersey. 57.Jordan, C. F. (1969) “Derivation of leaf area index from quality of light on the forest floor,” Ecology, 50:663–666. 58.Julesz, B. (1975), “Experiments in the visual perception of texture,” Scientific American, 232:34-43. 59.Junko, I., W. Shiaki, and F. Takahiko (2001), “Landform analysis of slope movements using DEM in Higashikubiki area,” Computers and Geosciences, 27:851-865. 60.Jury, M. R., S. Weeks, and M. P. Godwe (1997), “Satellite-observed vegetation as an indicator of climate variability over Southern Africa,” South African Journal of Science, 93:34-38. 61.Kaiser, H. F. (1960), “The varimax criterion for analytic rotation in factor analysis,” Psychometrika, 23:187-200. 62.Keefer, D. K. (2000), “Statistical analysis of an earthquake-induced landslide distribution–the 1989 Loma Prieta, California event,” Engineering Geology, 58:231-249 63.Khazai, B., and N. Sitar (2000), “Landsliding in native ground: a GIS-based approach to regional seismic slope stability assessment,” Internet Report, URL: http://www.ce.berkeley.edu/~khazai/Research/Report/index.html. 64.Kienast, F. (1993), “Analysis of historic landscape pattern with a geographical information system- a methodological outline,” Landscape Ecology, 8(2):103-118. 65.Kleissner, C. (1998), “Data mining for the enterprise,” IEEE Proceedings of the 31st Annual Hawaii International Conference on System Sciences, Vol. 7, p.295-304. 66.Krummel, J. R., R. H. Gardner, and G. Sugihara (1987), “Landscape patterns in a disturbed environment,” Oikos, 48:321-324. 67.LaGro, J. A. Jr., and S. D. DeGloria (1992), “Land use dynamics within an urbanizing non-metropolitan county in New York State(USA),” Landscape Ecology, 7(4):275-289. 68.Lausch, A., and F. Herzog, (2002), “Applicability of landscape metrics for the monitoring of landscape change: issues of scales, resolution and interpretability,” Ecological Indicators, 2:3-15. 69.Li, B. L., and S. Archer (1997), “Weighted mean patch size- a robust index for quantifying landscape structure,” Ecological Modelling, 102(2-3):355-360. 70.Lillesand, T. M., W. L. Johnson, R. L. Deveil, O. M. Lixdstrom, and D. E. Meisner, (1983), “Use of landsat data to predict the trophic state of Minnesota lakes,“ Photogrammetric Engineering and Remote Sensing, 49(2):219-229. 71.Lillesand, T. M., R. W. Kifer, and J. W. Chipman, (2008), “Remote Sensing and Image Interpretation,” John Wiley & Sons, Inc., p.15-592. 72.Lin, W. T., C. Y. Lin, J. S. Tsai, and P. H. Huang (2008), “Eco-environmental changes assessment at the Chiufenershan landslide area caused by catastrophic earthquake in Central Taiwan,” Ecological Engineering, 33(3-4):220-232. 73.Lyon, J. G., D. Yuan, R. S. Lunetta, and C. D. Elvidge (1998), “A change detection experiment using vegetation indices,” Photogrammetric Engineering and Remote Sensing, 64(2):143-150. 74.Marceau, D. J., P. J. Howarth, Jm. M. Dubois, and D. J. Gratton (1990), “Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT,” IEEE Transaction on Geosciences and Remote Sensing, 28:513-519. 75.McGarigal, K., and B. J. Marks (1995), “FRAGSTATS: spatial pattern analysis program for quantifying landscape structure,” General Technical Report PNW-GTR-351, p.122 76.Motyka, J., B. Dobrzanski, and S. Zawadski (1950), “Wstepne badania nad lakami poludniowowschodneij Lubelszczyzny (Preliminary studies on meadows in the southeast of the province Lublin. Summary in English),” Ann. Univ. M. Curie–Sklodowska, 2nd Edition, 5:367-447. 77.Muller, M. R., and J. Middleton (1994), “A Markov model of land-use change dynamics in the Niagara Region,” Ontario, Canada. Landscape Ecology, 9(2):151-157. 78.Myneni, R., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani (1997), “Increased plant growth in northern high latitudes from 1981–1991,” Nature, 386:698-702. 79.Nellemann, C., and M. G. Thomsen. (1994), “Terrain ruggedness and caribou forage availability during snowmelt on the Arctic Coastal Plain,” Alaska. Arctic, 47:361-367. 80.Obeysekera, J., and K. Rutchey (1997), “Selection of scale for Everglades landscape models,” Landscape Ecology, 12(1):7-18. 81.Ohanian, P. P., and R. C. Dubes (1992), “Performance evaluation for four classes of texture features,” Pattern Recognition, 25:819-833. 82.Parise M., and R. W. Jibson (2000), “A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake,” Engineering Geology, 58(3):251-270. 83.Pearson, K. (1901), “On lines and planes of closest fit to systems of points in spaces,” Philosoghical Magazine, Series, 6(2):559-572. 84.Pearson, R. L., and L. D. Miller (1972), “Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie,” Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of the Environment, 2:1355-1379. 85.Pratsinis, S. E., M. D. Zeldin, and E. C. Ellis (1988), “Source resolution of the fine carbonaceous aerosol by principal component-stepwise regression analysis,” Environmental Science and Technology, 22:212-216. 86.Price, J. C., and W. C. Bausch (1995), “Leaf area index estimation from visible and near-infrared reflectance data,” Remote Sensing of Environment, 52:55-65. 87.Prince, S. D., and C. J. Tucker (1986), “Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation,” International Journal of Remote Sensing, 7:1555-1570. 88.Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian (1994), “A modified soil adjusted vegetation index,” Remote Sensing of Environment, 48:119-126. 89.Qihao, W. (2002), “Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling,” Journal of Environmental Management, 64:273-284. 90.Remote Sensing Technology Center of Japan (RESTEC) (2000), “An introduction to use of earth observation satellite,” 25th Anniversary International Symposium, p.49. 91.Richards, J. A. (1984), “Thematic mapping from multitemporal image data using the principal components transformation,” Remote Sensing of Environment, 16:35-46. 92.Richardson, A. J., and C. L. Wiegand (1977), “Distinguishing vegetation from soil background information,” Photogrammetric Engineering and Remote Sensing, 43:1541-1552. 93.Riley, S. J., S. D. DeGloria, and R. Elliot (1999), “A terrain ruggedness index that quantifies topographic heterogeneity,” Intermountain Journal of Sciences, 5:1-4. 94.Ritchie, A. M. (1958), “Recognition and identification of landslides,” In Landslides and Engineering Practice. Highway Research Board Special Report, 29:48-51. 95.Rolland, J. P., V. Vo, B. Bloss, and C. K. Abbey (2000), “Fast algorithms for histogram matching: application to texture synthesis,” Journal of Electronic Imaging, 9:9-45. 96.Rondeaux, G., M. Steven, and F. Baret (1996), “Optimization of soil-adjusted vegetation indices,” Remote Sensing of Environment, 55:95-107. 97.Rouse, J. W., Jr. Haas, R. H., J. A. Schell, and D. W. Deering (1973), “Monitoring vegetation systems in the great plains with ERTS,” In: NASA SP-351, 3rd ERTS-1 Symposium, Washington, DC, p.309-317. 98.Schroeder, D., and A. H. Perera (2002), “A comparison of large-scale spatial vegetation patterns following clearcuts and fires in Ontario’s boreal forests,” Forest Ecology and Management, 159:217-230. 99.Sharpe, C. F. S. (1938), “Landslides and related phenomena”, Columbia University Press, New York. 100.Shearer, S. A., and R. G. Holmes (1990), “Plant identification using color co-occurrence matrices,” Transaction of ASAE, 33(6):2037-2044. 101.Skinner, C. N (1995), “Change in spatial characteristics of forest openings in the Klamath Mountains of northwestern California,” USA. Landscape Ecology, 10:219-228. 102.Tamura, H., S. Mori, and T. Yamawaki (1978), “Textural features corresponding to visual perception,” IEEE Transactions on Systems, Man and Cybernetics, 8(6):460-472. 103.Tassan, S (1993), “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration form thematic mapper data in coastal waters,” International Journal of Remote Sensing, 14(6):1221-1229. 104.Tatem, A. J., H. G. Lewis, P. M. Atkinson, and M. S. Nixon (2001), “Super-resolution target identification from remotely sensed images using a Hopfield neural network,” IRRR Transactions on Geoscience and Remote Sensing, (39):781-796. 105.Tatem, A. J., H. G. Lewis, P. M. Atkinson, and M. S. Nixon (2002), “Super-resolution land cover pattern prediction using a Hopfield neural network,” Remote Sensing of Environment, 79:1-14. 106.Teillet, P. M., K. Staenz, and D. J. Williams (1997), “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sensing of Environment, 61:139-49. 107.Tibaldi, A., L. Ferrari, and G. Pasquare (1995), “Landslides triggered by earthquakes and their relations with fault and mountain slope geometry: an example from Ecuado,” Geomorphology, 11:215-226. 108.Toan, L., T., F. Ribbes, L. Wang, N. Floury, K. H. Ding, J. A. Kong, and M. Fujita (1997), “Rice crop mapping and monitoring using ERS-1 data based on experiment and modelling results,” IEEE Transcations on Geoscience and Remote Sensing, 35:41-56. 109.Troll, C. (1939) , “Luftbildplan und okologisch Bodenforschung,”Zeitschrift der Gesellschaft für Erdkunde zu, Berlin, Germany, p.241-298. 110.Tucker, C. J. (1979), “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sensing of Environment, 8:127-150. 111.Tucker, C. J., and P. J. Sellers (1986), “Satellite remote sensing of primary production,” International Journal of Remote Sensing, 7:1395-1416. 112.Turner, M. G., and C. L. Ruscher (1988), “Changes in landscape patterns in Georgia,” USA. Landscape Ecology, 1:241-251. 113.Turner, M. G. (1990), “Landscape changed in nine rural counties of Georgia,” Photogrametry Engineering and Remote Sensing, 56:379-386. 114.Turner, M. G. (1990), “Spatial and temporal analysis of landscape patterns,” Landscape Ecology, 4:21-30. 115.Usher, M. B. (1992), “Statistical models of succession,” Chapman and Hall, London, p.215-248. (Cited from Acevedo, M.F., D. L. Urban and H. H. Shugart, 1996) 116.Varnes, D. J. (1978), “Landslides Analysis and Contral,” National Academy of Sciences Transportation Research Board Specail Report, p.176. 117.Wang, F. (1990), “Fuzzy supervised classification of remote sensing images,” IEEE Transactions on Geosciences and Remote Sensing, 28(2):194-201. 118.Weissel, K .W., C. P. Stark, and N. Hovius (2001), “Landslides triggered by the 1999 Mw7.6 Chi CHI earthquake in Taiwan and their relationship to topography,” Geoscience and Remote Sensing Symposium. IGARSS 01 IEEE, vol. 2, p.759-761. 119.Weszka, J. S., C. R. Dyer, and A. Rosenfeld (1976), “A comparative study of texture measures for terrain classification,” IEEE Transation Systems Man Cybernet, 6(4):269-285. 120.Williamson, H. D. (1989), “The discrimination of irrigated orchard and vine crops using remotely sensed data,” Photogrammetric Engineering and Remote Sensing, 55(1):77-82. 121.Wilson, J. P., and J. C. Gallant (2000), “Terrain Analysis,” John Wiley & Sons, Inc., p.51-58. 122.Wu, R., J. A. Weinman, and R. F. Chin (1985), “Determination of rainfall rate from GOES satellite images by a pattern recognition technique,” Journal of Atmospheric and Oceanic Technology, 2:314-330. 123.Zaitchik, B. F., and H. M. V. Es (2003), “Applying a GIS slope-stability model to site-specific land prevention in Honduras,” Journal of Soil and Water Conservation, 58(1):45-53.
摘要: 
Serious sediment disaster was caused by the 921 earthquake in central Taiwan. Due to scattered distribution of landslide, how to effectively extract landslide, estimate collapse volume, select optimum management site, monitor and assess vegetative restoration and simulate vegetative restoration are necessary for landslide management. The environmental restoration in a watershed is an interdisciplinary science including soil and water conservation, topography, hydrology, geology, vegetation, landscape and so forth. Besides, integrating related science for environmental restoration is urgent because a watershed hazard may be caused by complicated reasons and need consider many factors. There are diverse suitability indices for watershed application in each discipline. Moreover, different kind of hazard, geomorphologic evolution, and vegetation restoration need concern different scale, temporal, and spatial considerations. If an appropriate environmental index is selected for watershed environmental restoration may reach better results. Therefore, this study will collect and establish the most commonly used environmental indices for watershed restoration from different science fields. The elected environmental index assessment and selection for study site will be categorized according to their hierocratic structure such as geomorphic evolution, landscape changes, vegetation restoration, and water resources conservation capability and provided to watershed environmental restoration implementation. Finally, the environmental indices will be evaluated by integrated assessment and analysis and refereed as the design baseline for watershed environmental restoration.
Traditional image differencing method is often used for rapid landslide extraction, which is manipulated by using difference of grey values derived from satellite images of pre- and/or post-landslide. However, actual landslides may include the collapse of bare lands. There exist limitations to extract the areas of bare land collapse using difference of grey values only. Errors would encounter if DEM differencing method is directly adopted to extract the landslides due to the resolution of DEM. Especially, a dense vegetation cover usually causes blurred delineation of DEM for the pre-landslide phase. Therefore, there is a need to extract reasonable collapse depth of the landslides. In addition, the properties of soil characteristics both at collapse and deposition sites are great different, it is necessary to discuss them separately to understand each of their vegetative restoration; respectively. How to reseanable estimation the collapse volume of a landslide is essential to assess the influence of process of sediment delivery on the main protected human lives, properties and facilities for better decision making of management priority. A method with the assumption of landslide occurs at the moment of shear strength is equal to gravitational force will trigger the failure mechanism proposed by Dymond et al. can be employed to find out the relationship of collapse depth and slope. And the Khazai and Sitar method, with the hypothesis of weathering rocks and colluvium results in collapse, which is usually adopted to evaluate the collapse depth is an experiential formula and needs to be verified for suitable use in local scale. The multi-objective decision-making is often used in priority of site selection, but the weighting for each considered factor is given by subjectively and/or the feed-back of previous case study. To develop methods which can objective and reasonable grading the management sites for ranking the priority, to integrate the environmental indices on vegetation restorative assessment using remote sensing technology and to model the vegetative succession of a landslide are also the main topics of this study.
BaiShi, Chiufenershan, Ninety-nine peaks and Dajia river watershed were chosen as the research sites. Integrating remote sensing, statistic analysis, landscape spatial quantity and field investigation coupled with environmental indices were fulfilled used in this study. Results show that modified DEM method can effectively correct the map-producing error and can reasonably classify a landslide into parts of collapse and deposition. Landslide volumes derived from modified DEM method and Khazai and Sitar method shows significantly positive correcation; however there is an obviously underestimated for Khazai and Sitar method. The principal influence factors of collapse depth are total curve, collapse area, plan curvature and wetness index. Chung-Hsin Bridge watershed at Chiufenershan was chosen as a case study for priority management site selection. According to the curve of landslide ratio and watershed area along the main river, abrupt changes of landslide ratio can be as an index to determine the sites of priority management. Although the vegetation recovery rate is very well, the composition of vegetation species and similar index of plant community in landslides compared with neighbor non-landslides are still different. Vegetative sucession simulation shows that under no interference, the denudation areas of Chiufenershan and Ninety-nine peaks caused by the catastrophic quake can recover to the status of before quake in 2012〜2028 and in 2014〜2028, respectively.

九二一震災集水區崩塌造成台灣中部山區嚴重土砂災害,因崩塌地分布幅員遼闊,如何有效萃取崩塌區位、推估崩塌土方量、優選治理區位、監測評估植生復育狀況、以及模擬植生復育等之研究,提供崩塌地治理之參考有其必要。集水區經營管理成效之考量因素頗多,如何整合相關科學量化萃取集水區環境資料,建置指標供集水區經營管理成效評估之用極為重要。因各學科於集水區應用上常有其適宜性之環境指標,且指標種類繁多,加上需考量其尺度性、時間性及空間性,若能選用合適之環境指標於集水區環境復育上,更可事半功倍。因此,本研究針對各學科於集水區環境復育上常使用之相關環境資料進行指標蒐集及建置,並依應用層級及類別進行歸納,選擇樣區進行環境指標評估及篩選,以供集水區環境復育之用,如地形演化、地景變遷、植生復育及水源涵養能力等分析;最後將環境指標進行整合性評估及綜合研析,期應用環境指標於崩塌地治理成效之評估。
崩塌區位之萃取,傳統多以影像相減法最為快速及廣泛使用,但實際崩塌範圍內亦可能涵蓋裸地崩塌,若僅用影像灰度值之差異則無法完全萃取實際崩塌區位;若以崩塌前後期之DEM直接相減則會因製圖精度,尤以崩塌前之DEM資料常因林木遮蔽嚴重影響地面實際高程之繪製,將導致崩塌深度萃取誤差。另滑落及堆積區之土壤理化性質差異極大,對後續植生之復育有顯著影響,有必要將兩者區隔討論方能瞭解崩塌地實際之植生復育狀況。崩塌區位萃取後,需對崩塌土方量進行推估,並瞭解土砂運移對保全對象之影響,進而決定治理優先順序及施做工法。在崩塌土方量之推估,一般常用的方法為Dymond等學者於1999年所提出,假設坡面之剪應力等於抗剪力時,為啟動崩塌之機制瞬間,可得崩塌深度與坡度之關係,目前崩塌深度常以Khazai and Sitar方法進行估算,假設崩塌為風化後之岩體或崩積層,為經驗式其適用性有待驗證。治理區位之優選,常以多目標決策方法,惟對於權重設定因人而異或藉由相關案例回饋,如何建立合理之治理區位優選極為重要。鑑於崩塌地分布遼闊,現地調查耗時費力,如何整合相關環境指標及監測技術對崩塌地進行植生復育評估及模擬有其必要。
本研究以白石、大甲溪、九九峰、及九份二山等地為研究樣區,應用地形指標、生態指標及綠化指標等環境指標配合遙測技術、統計分析、地景空間計量及現地植生調查等方法,綜合探討集水區環境指標應用於崩塌地植生復育之研究。結果顯示DEM修正法可修正製圖誤差,合理的將滑落及堆積區分別加以萃取。以Khazai and Sitar法與DEM修正法推估崩塌土方量時呈顯著正相關;惟Khazai and Sitar法有低估情形,須加以修正。將崩塌深度與地形指標及崩塌地屬性進行統計分析,顯示主要影響因子為總曲率、面積、平面曲率及濕潤指數。以九份二山中興橋上游集水區為優選治理區位之案例,經由主河道點位集水區之崩塌率與面積變化曲線發現,可藉集水區崩塌率變化之指標值,客觀地優選治理區位。另由衛星影像及現地植生調查等不同尺度之監測,可評估不同時期植生之復育狀況。距九二一震災事件已屆10年,九份二山崩塌區位之植生復育雖好,但其植物社會組成與臨近未崩塌植群之相似性指數差異仍大。利用馬可夫鏈模式推測植生復育,顯示在未受重大事件干擾下,九份二山及九九峰分於2012~2028年及2014~2028年間即可達植生復育穩定。
URI: http://hdl.handle.net/11455/34792
其他識別: U0005-2001201003054800
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.