Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorSu-Chin Chenen_US
dc.contributor.authorFerng, Jhy-Weien_US
dc.identifier.citation何春蓀(1986),「臺灣地質概論-臺灣地質圖說明書」,經濟部中央地質調查所。 林朝棨(1957),「臺灣地形」,臺灣省文獻委員會。 吳麗娟(2000),「台灣北部主要河川遷急點之地形學研究」,中國文化大學地學研究所地理組碩士論文。 陳彥傑(2004),「台灣山脈的構造地形指標特性 --以面積高度積分、地形碎形參數與河流坡降指標為依據」,國立成功大學地球科學研究博士論文。 陳惠芬(1984),「從三角點檢測成果見到的臺灣的地盤升降」,經濟部中央地質調查所特刊,笫3號,第27-140 頁。 黃金維,蕭宇伸,林廷融 (2003),「台灣數值高程模型之建立及精度分析」,中華民國地籍測量學會會刊。 劉明錡(2004),「台灣西北部河階之地形學研究」,國立台灣師範大學地理學系博士論文。 蔡衡、宋國城(2000),「模擬河流受基準面變動的堆積與下切」,中國地質學會八十九年度年會暨學術研討會論文摘要,第166-168 頁。 熊立華、郭生練(2003),基於「DEM的數字河網生成方法的探討」,長江科學院院報,20(4):14-17。 錢寧、張仁、周至德(1987),河床演變學,「科學出版社」,第14-18頁。 Anderson, R.S. (1994) The growth and decay of the Santa Cruz Mountains, Journal of Geophysical Research, v.99, p.20161-20180. Ahnert, F. (1970), “Functional relationships between denudation, relief, andin largemid-latitude drainage basins,” American Journal of Science, v.268, p.243–263. Bonilla, M.G. (1975) A review of recently active faults in Taiwan, U. S. Geological Survey Open-File Report, no.75-41, 58pp. Dietrich WE, Dunne T. (1993),. The channel head. In Channel Network Hydrology, Bevan K, Kirkby MJ (eds). Wiley: Chichester; 175–219. Dadson S.J., Hovius N., Chen H., Dade B., Hsieh M.L., Willett S.D., Hu J.C., Horng M.J., Chen M.C., Stark C.P., Lague D. and Lin J.C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, v. 426, p.648-651. Dalla Fontana G., Marchi L. (2003), “Slope-area relationships and sediment dynamics in two alpine streams,” Hydrological Processes, 17: 73-87. Dietrich W. E., Dunne T (1993), “The channel head,” Channel Network Hydrology, Bevan K, Kirkby M.J. (eds), Wiley: Chichester, 175-219. Flint J.J. (1974), “Stream gradient as a function of order, magnitude and discharge,” Water Resources Research, 10(5): 969-973. Hack, J.T. (1973), “Stream-profile analysis and stream-gradient index,” U.S. Geol. Surv. Jour. Res., v.1, p. 421-429. Hayakawa Y. S. and Oguchi Takashi, 2006. “DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers,” Geomorphology, 78: 90-106. Hancock G.R., Evans K.G. (2006), “Channel head location and characteristics using digital elevation models,” Earth Surface Processes and Landforms, 31:809-824. Ho, C.S. (1986) A synthesis of the geologic evolution of Taiwan, Tectonophysics, v.125, p.1-16. Horton R.E. (1945), “Erosional development of streams and their drainage basin; hydrophysical approach to quantitative morphology,” Geological Society of America Bulletin, 56: 275-370. Howard, A.D., and Kerby, G. (1983), “Channel changes in badlands,” Geological Society of America Bulletin, v.94, p.739-752. Howard, A.D. (1994), “A detachment-limited model of drainage basin evolution,” Water Resources Research, v.30, p.2261-2285. Howard, A.D., Seidl, M.A., and Dietrich, W.E. (1994), “Modeling fluvial erosion on regional to continental scales,” Journal of Geophysical Research, v.99, p.13,971-13,986. Hurtrez, J.E., Sol, C. and Lucazeau, F. (1999), “Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (central Nepal),” Earth Surf. Process Landforms, v.24, p.799-808. Jenson, S. K. and J. O. Domingue (1988), Extracting Topogrphic Structure from Digital Elevation Data for Geographic Information System Analysis, Photogrammetric Engineering & Remote Sensing, 54(11): 1593-1600. KlinkenberG, B. and Goodchild, M.F. (1992),. “The fractal properties of topography: a comparison of methods,” Earth Surface Processes and Landforms, 17, 217–234. Kooi, H., and Beaumont, C. (1996), “Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model,” Journal of Geophysical Research, v.102, p.3361–3386. Lifton, N.A. and Chase, C.G. (1992), “Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains,” California, Geomorphology, v.5, p.77-114. Lin, J.C. (1999), “Morphotectonic evolution of Taiwan,” Geomorphology and Global Tectonics, p.135-146. Liu, T.K., Chen, Y.G., Chen, W.S., and Jiang, S.H. (2000) Rates of cooling and denudation of the early Penglai orogeny, Taiwan as assessed by fission-track constraints, Tectonphysics, v.320, p.69-82. Masek, J.G., Isacks, B.L., Gubbels, T.L. and Fielding, E.J. (1994), “Erosion and tectonics at the margins of Continental Plateaus,” Journal of Geophysical Research, v.99, p.13941-13956. McMaster K.J. (2002), “Effects of digital elevation model resolution on derived stream network positions,” Water Resources Research, 38(4): 131-138. Montgomery D.R., Dietrich W.E. (1988), “Where do channel begin,” Nature 336: 232-234. Montgomery DR, Dietrich WE. (1988),. Where do channels begin. Nature 336: 232–234. Montgomery D.R., Dietrich W.E. (1989), “Source area, drainage density, and drainage area-slope thresholds,” Water Resources Research, 25(8): 1907-1918. Morisawa, M. E.(1985):River-form and process, Longman, London and New York, 222pp. O’Callaghan J., Mark D. (1984), “The extraction of drainage networks from digital elevation models,” Computer Vision Graphics and Image Processing, 28: 328-344. Peng, T.H., Li, Y.H. and Wu, F.T. (1977) Tectonic uplift rates of the Taiwan Island since the early Holocene, Men. Geol. Soc. China, v.2, p.57-69. Rzh_TW
dc.description.abstractOblique arc-continent collision in the period of Penglai orogeny made the Taiwan mountain belt develop landscape of three evolution stages of post-steady-state (north Taiwan, collapsing range), steady-state (central Taiwan) and pre-steady-state (south Taiwan, growing range). Analysis of stream-power erosion model shows linear form in the S-A plot and fittings of bedrock profiles are mainly the exponential functions in the steady-state range. The north boundaries of the steady-state range are near the Lanyang river (east Taiwan) and Taan river (west Taiwan), and the south boundaries are near the Lele river (east Taiwan) and Laonung river (west Taiwan). Moreover, the S-A plots in the ranges of north and south Taiwan show concave and convex forms, respectively, and fittings of bedrock profiles are both logarithmic. Distribution of hypsometric integral (HI) in Taiwan reflects the uplift sequence of the Taiwan orogenic belt. The Central Range with higher HI uplifted earlier than the Eastern Coastal Range and the Western Foothills. In the Western Foothills, higher HI in the north district once implies that the north district uplifted earlier than the south district. Due to aggradation process, the plain areas that uplifted most presently have high HI contrarily. Pattern of HI in the Western Coastal Plain also shows that the passive indentation of the Peikang High has exerted crustal deformation not only to the oblique propagating fold-and-thrust units in the Western Foothills but also to the recent sediments in the Coastal Plains. The hypsometric curve and the altitude frequency distribution reflect the landscape evolution stages and the residual mass distribution of drainage basin, respectively. In the plain areas, the hypsometric curves of the alluvial plains are S-shaped and the altitude frequency distribution concentrate in median altitude, but the hypsometric curves of the structural subsidence basins or plains are concave and the altitude frequency distribution concentrate in low altitude. In the western foothills, the hypsometric curves are concave and the altitude frequency distribution concentrate in low altitude. Due to continuous uplift process, the HI of the western foothills will increase, the hypsometric curves will gradually develop to S-shaped, and the altitude frequency distribution will finally concentr ate in median altitude. Moreover, hypsometric curves of some high uplift rate areas, such as Linkou, Houli, Huko and Tainan tablelands, are convex and quite similar to the young IV age of the Strahler model. In the central range, due to the balance of uplifting and erosion, the hypsometric curves are all S-shaped and the altitude frequency show normal distribution. In the eastern coastal range, the hypsometric curves are concave and the altitude frequency distribution concentrate in low altitude, and are very similar to the hill areas in the western foothills. Beside, increasing or decreasing of HI caused by some local but young anticline or syncline shows that HI could be a good tool for detecting local variations of subsurface structuresen_US
dc.description.abstract蓬萊運動的弧陸斜碰撞使得台灣造山帶的山脈呈現崩塌(北部)、均衡(中部)、成長(南部)等三個不同演育階段的地形。河流水力侵蝕模型與基岩河道的河流縱剖面擬合分析的結果顯示,台灣均衡山脈的範圍北界約在蘭陽溪(東部)與大安溪(西部)附近,南界約在樂樂溪(東部)與老濃溪(西部)附近,其S-A 關係圖呈現直線關係,河流縱剖面的擬合主要以指數函數為主,而位於均衡山脈以北與以南的山脈地區,其S-A 關係圖則分別呈現下凹與上凸關係,河流縱剖面的擬合則以對數函數為主。 測高曲線積分值(HI)的分佈與台灣地體生成的時序相關,除了最晚生成的平原區是因其沖積平原的性質而造成HI 值的升高外,整體趨勢是中央山脈地質區相對於其兩側的海岸山脈與西部麓山帶早生成,其HI 值相對較高,而西部麓山帶北段的HI 值又比南段的高,暗示西部麓山帶的北段比南段早生成。 集水盆地的面積高度曲線型態與高程頻率分佈圖可反應該集水盆地的演育期與其內所殘留的土地體積分佈狀態。台灣的平原地形區中,單純的沖積平原其面積高度曲線呈現S 形,高程頻率分佈集中在中高程部分,而構造陷落盆地或平原則呈現凹形,高程頻率分佈集中在低高程部分;西部麓山帶的面積高度曲線大致呈現凹形,高程頻率分佈集中在低高程部分。由於持續受到抬升作用的影響,西部麓山帶未來面積高度積分會逐漸增加,曲線朝S 形發展,高程頻率往中高程集中。而於近期內抬升量較大的地區,其曲線呈現凸形,符合Strahler 的幼年期;中央山脈地區的高程頻率分佈為常態分佈,曲線呈現S 形且離散程度小,顯示此區的抬升作用與剝蝕作用達到平衡;海岸山脈的面積高度積分值偏低,曲線呈現凹形,高程頻率分佈主要在低高程的部分,與西部麓山帶的丘陵區型態類似。此外,一些尺度較小且近期內才形成的局部背斜或向斜構造,亦會造成局部面積高度積分值偏高或偏低的現象,顯示面積高度積分可用來偵測局部的構造變化。 在分析台灣山脈於各均衡狀態時的一維地形特性上,由於河流縱剖面擬合分析比河流坡降指標與Hack剖面形態分析更為適用,因此綜合面積高度積分、與河流縱剖面擬合的結果,在均衡山脈地形區,其具有發展到最高的S 形平均面積高度曲線、最高的平均面積高度積分值、最大的坡度期望值、以及河流縱剖面的擬合呈現指數函數等構造地形指標特性;在成長山脈地形區,其具有最低的S 形平均面積高度曲線、最低的平均面積高度積分值、最低的最大坡度期望值、以及河流縱剖面的擬合呈現對數函數等構造地形指標特性;而屬於崩塌山脈地形的雪山北部,其構造地形指標特性則介於以上兩者之間。 本研究藉由探討石門水庫上游集水區的地形演變的特性,以瞭解崩塌地的發生,與地形演變階段的關係,以及若是屬於為維持均衡山脈地形必然發生的剝蝕夷平作用的話,這些崩塌地的分布在地形演變作用下形成的流域的地形特徵是否存在必然的關聯。zh_TW
dc.description.tableofcontents摘要 i ABSTRACT iii 目次 v 表目次 vii 圖目次 viii 第一章 緒論 1 1.1 研究動機 1 1.2 研究流程 2 1.2.1 DEM資料的評估及使用 2 1.2.2 山脈地形的均衡狀態 3 1.2.3 河道遷急點的判釋 4 第二章 地形演變及地形期 7 2.1 地質環境地形演變 7 2.1.1 研究區的地質環境特性 7 2.1.2 地形演變 9 2.2 石門水庫集水區的地形 11 2.2.1 角板山河階群 11 2.2.2 高坡峽谷間的河階及赭土緩起伏面 12 2.2.3 三光河階群及三光溪峽谷 12 2.2.4 薩克亞金溪岸之赭土緩起伏面 12 2.3 河階地形的特徵 15 2.3.1 河階的地形特徵 15 2.3.2 階地的形成機制 16 第三章 集水區的地形特徵及地形指標 21 3.1 測高曲線及測高曲線積分 21 3.1.1測高曲線的型態特性 21 3.1.2測高曲線的統計意義 22 3.1.3 斜面形狀對測高曲線型態之影響 24 3.1.4 不同切蝕程度地形的測高曲線 35 3.1.5 源頭後退與測高曲線型態之關係 38 3.1.6 影響測高曲線積分的其他因素 40 3.1.7小結 42 3.2 均衡地形指標 42 3.2.1 河流水力侵蝕模型 42 3.3 河道源頭特性 45 3.4 河流縱剖面的形態 51 第四章 河道坡度分析及河道之縱剖面型態 55 4.1 河道坡度分析方法 55 4.1.1 河道坡度的測量 55 4.1.2 線性河道縱斷面的平均坡度與量測長度的關係 57 4.1.3 非線性河道縱斷面的平均坡度與量測長度的關係 62 4.2遷急點位置的標示方法 66 4.3 石門水庫集水區的河道遷急點 73 第五章 石門水庫集水區地理環境特性 89 5.1 地形特性 89 5.2 地質特性 92 5.2.1 岩層性質 92 5.2.2 構造特性 94 5.3 水系分布 94 5.4 崩塌概況 97 5.4.1大漢溪主流的崩塌地 97 5.5 調查點概況 101 第六章 結果與討 125 6.1 測高曲線積分分布 125 6.2 大漢溪流域的河階地形 126 6.3 階地縱剖面與遷急點 130 6.4河階地形演育模式 133 第七章 結論 137 參考文獻 139zh_TW
dc.subjectS-A ploten_US
dc.subjectS-A 關係圖zh_TW
dc.subjectHypsometric integralen_US
dc.subjectstream length-gradient indexen_US
dc.subjectHack profileen_US
dc.titleMorphological index of nick points in Shimen watersheden_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:水土保持學系
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.