Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34860
標題: 壩體移除對河床變化之試驗研究與鋼管壩之鋼構安定分析
Dam Removal Effects on Bed Form Variations and Structural Stability Analyses for the Steel Dam
作者: 王圍穩
Wang, Wei-Wen
關鍵字: 壩體移除;Dam removal;排砂量;鋼構檢核;Sediment discharge;Steel structural stability analyses
出版社: 水土保持學系所
引用: 1. 內政部營建署(1998),「鋼構造建築物鋼結構設計技術規範(一)鋼結構容許應力設計法規範及解說」,營建雜誌社。 2. 水土保持局(2007),「濁水溪上游集水區整體調查規劃圖表與解說彙編」,行政院農委會水土保持局。 3. 水山高久、鈴木宏、及川義明、森田昭宏,1988,「透過性防砂ダムに関する實驗的研究」新砂防,157: pp: 21 – 25。 4. 江永哲、連惠邦、林裕益、李明晃、吳道煦(1993),「開放式防砂壩對土石流防治功效之探討」,中華水土保持學報,24(1),pp. 37-43。 5. 江祥平(1998),「防砂壩改建滯洪壩後上游河床型態變化之研究」,國立中興大學水土保持研究所,碩士論文。 6. 行政院農業委員會水土保持局(2006),「水土保持手冊」,行政院農業委員會水土保持局。 7. 周明坤(1987),「防砂壩上游河床之沖淤變化觀測與試驗研究」,國立中興大學水土保持研究所,碩士論文。 8. 段錦浩、連惠邦、葉昭憲(1999),「七家灣河床棲地改善之試驗研究(二)–系列防砂壩改善工程對河床型態之影響」,內政部營建署雪霸國家公園管理處。 9. 砂防研究室(2007),「土石流‧流木對策設計技術指針解說」,國土交通省國土技術政策綜合研究所。 10. 張明雄、林曜松(1999),「攔砂壩對溪流水生物多樣性的影響」,生物多樣性論文集。 11. 許乃文(2003),「淬火硬化鋼格柵欄防砂壩之設計及應用」,國立成功大學土木工程研究所,碩士論文。 12. 陳樹群(2006),「透水攔淤防砂壩對細顆粒泥砂之囚砂特性研究」,行政院農業委員會水土保持局。 13. 經濟部水利署水利規劃試驗所(2008),「橫向水工結構物移除、改善與河川復育效益評估(1/3)」,財團法人台灣水利環境科技研究發展教育基金會。 14. 廣島縣土木建築部砂防課(1996),「砂防技術指針-設計事例編」,廣島縣土木建築部砂防課,pp. 92~94。 15. 鋼製砂防構造物委員會(2001),「鋼製砂防構造物設計便覽」,財團法人砂防、地すべり技術センタ一。 16. Biedenharn, D.S., C.M. Elliott, C.C. Watson (1997), “The WES Stream Investigation and Streambank Stabilization Handbook,” Prepared for U.S. Environmental Protection Agency by U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi. 17. Doyle, M. W., E. H. Stanley, J. M. Harbor (2003), “Channel adjustments following two dam removals in Wisconsin,” Water Resources Research, 39: 1011. 18. Doyle, M.W., E.H. Stanley, J.M. Harbor (1997), “Hydrogeomorphic controls on phosphorus retention in streams,” Water Resources Research, 36: 1147. 19. Kondolf, G. M. (1997), “Hungry Water: Effects of Dams and Gravel Mining on River Channels,” Environmental Management, 21(4): 533-551. 20. Lane, E. W. (1955), “The Importance of Fluvial Morphology in Hydraulic Engineering,” Proc., ASCE, 745(81): 1-17. 21. Lorang, M. S. and G. Aggett. (2005), “Potential sedimentation impacts related to dam removal: Icicle Creek, Washington, USA,” Geomorphology, 71:182-201. 22. Nakano, H., Kasai, S., Moriyama, H., Mizuno, M. (2003), “Safer and More Economical Steel Sabo Dam Designs,” Kobe Steel Engineering Reports, 53(1): 86-90. 23. Ono, G. I., Mizuyama, T., Matsumura, K. (2004), “Current pratices in the design and evaluation of steel Sabo facilities in Japan,” Internationales Symposion Interpraevent 2004-Riva/Trient, VII: 253-264. 24. Pizzuto, J. (2002), “Effects of dam removal on river form and process,” Bioscience, 52: 683-691. 25. Poff, N. L. and D. D. Hart. (2002), “How dams vary and why it matters for the emerging science of dam removal,” Bioscience, 52: 659-668. 26. Pozo, J., E. Orive, H. Fraile, A. Basaguren (1997), “Effects of Cernadilla-Valparaiso reservoir system in the River Tera,” Regulated Rivers: Research and Management, 13(1): 57-73. 27. Sedimentation and River Hydraulics Group (1997), “Erosion and Sedimentation Manual,” U.S. Department of the Interior Bureau of Reclamation, Technical Service Center, Denver, Colorado, USA. 28. Wehrmann, H., Hübl, J., Holzinger, G. (2006), “Classification of Dams in Torrential Watersheds,” Debris-Flow Disaster Mitigation Technique and Practice in Austria and Taiwan.
摘要: 
藉由渠槽實驗於不同流量及渠床坡度,且採用混合粒徑之床砂及供給清水流沖刷,來模擬壩體移除實驗,移除壩體包括全封閉壩、切口壩、格子壩、A型壩、R型壩及複合型壩六種,探討不同壩體的拆除對於排砂量、泥砂淤積及移除方式之間相互關係。實驗結果發現,壩體拆除後,排砂量的多寡不僅受缺口大小影響,也因床砂在水流沖刷後所形成的粗化作用而減少;在拆除方式方面,分次拆除過程中,拆除時間延長而將泥砂分散排出,降低單位時間的排砂量,避免大量泥砂一次排出;淤砂斷面變化則在壩體移除後,將產生溯源侵蝕的現象,當壩體缺口越大時,對上游淘刷範圍也越大。
目前所設置鋼管壩,壩體安定檢算比照以往著重滑動、傾倒等計算,缺少鋼結構之安定檢核。因此本研究後續也提出鋼管壩之鋼構檢核方法作為參考,檢核項目包含Slenderness Ratio(細長比)、Axial Stress(軸應力比)、Bending Stress(彎曲應力比)、Combined Stress(組合應力比)及Sheer Stress(剪應力比),經結構軟體(MIDAS GEN)計算後,均須滿足鋼構造建築物鋼結構設計技術規範之要求,鋼結構檢核才算通過。

The experimentation of dam removal effect on bed form variations is simulated under the conditions of sediment mixtures, different discharges and channel bed slopes. Some types of dams are such as check dam、slit dam、grid dam 、A-type dam、R-type dam and multiple. It is discussed the relationship among the removal of different dams and sediment discharge、sediment deposited and the ways of removing. According to this experiment, after removing the dams, the amount of sediment discharge is affected not only because of of the opening depth but also due to the armor-layer which is caused by the bed after being scour. Moreover, it is found that when the dam removals are being processed, if the time of dam removal is extended, the sediment exported separately so that it reduce the sediment discharge in the time unit to avoid the situation of large amount of sediment discharge at the same time. Finally, the changes of cross sections became the situation of headcutting which means the scouring rang extend with increasing opening depth.
Currently, the setups of steel dams are based on the former calculation such as sliding and toppling but lacking the sustainable examination of the structure of steels. Therefore, in this essay, it is referred to the ways of examinations, which includes Slenderness Ratio, Axial Stress, Bending Stress, Combined Stress and Sheer Stress, of the steel structure of the steel dams. The examination of steel structure will be passed after calculating via MIDAS GEN under the condition of the result meeting the demand of regulations of the designing techniques of steel structure buildings.
URI: http://hdl.handle.net/11455/34860
其他識別: U0005-3107200916505900
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.