Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34874
標題: 九二一地震對於大甲溪及大安溪河床演變之影響
Morphologic Change of Dajia and Daan river due to the Chichi earthquake
作者: 彭麗文
Peng, Li-Wen
關鍵字: 921 earthquake;九二一地震;river morphology;stratum uplift;河相演變;地層抬升
出版社: 水土保持學系所
引用: 1. 中央地質調查所(1999),「九二一地震地質調查報告」。 2. 王信凱(2000),「濕周-流量法應用於推估河川生態基流量之研究」,中興大學水土保持學系碩士論文。 3. 李元希、朱傚祖(2005),「九二一集集大地震-集集地震地表變形特性」,行政院國家科學委員會,第 103 -126 頁。 4. 李元希、吳維毓、石同生、盧詩丁、謝孟龍、張徽正(2000),「九二一集集地震地表變形特性-埤豐橋以東」,經濟部中央地調所特刊第十二號,第19-40頁。 5. 林偉雄(2000),「集集地震所致地表變形—石岡和竹子坑地區」,經濟部中央地調所特刊第十二號,第1-18頁。 6. 張海燕(1990),「河流演變工程學」,科學出版社,第165頁。 7. 陳文山、陳于高、劉聰桂、黃能偉、林清正、宋時驊、李昆杰(2000),「九二一集集大地震的地震斷層特性與構造意義」,經濟部中央地調所特刊第十二號,第139-154頁。 8. 經濟部水利處中區水資源局(2000),「九二一震災石岡壩緊急復建」。 9. 經濟部水利處水利規劃試驗所(2000),「大甲溪九二一地震災後治理規劃檢討」。 10. 經濟部水利署(2006),「開發建置中央管河川空間資訊系統—94年度大甲溪空間資訊系統建置計畫(1/2)」。 11. 經濟部水利署水利規劃試驗所(2000),「大安溪九二一地震災後治理規劃檢討」。 12. 經濟部水利署水利規劃試驗所(2000),「大安溪九二一地震災後治理規劃檢討」。 13. 經濟部水利署水利規劃試驗所(2002),「大安溪流域聯合整體治理規劃」。 14. 經濟部水利署水利規劃試驗所(2003),「大甲溪流域聯合整體治理規劃」。 15. 經濟部水利署水利規劃試驗所(2005),「大甲溪流域聯合整體治理規劃檢討」。 16. 經濟部水利署水利規劃試驗所(2008),「大甲溪石岡壩下游河段河床穩定方案之研究﹙1/4﹚」。 17. 經濟部水利署水利規劃試驗所(2008),「軟弱岩床劇烈沖蝕河段沖蝕行為之探討-以大安溪為例(1/3)」。 18. 經濟部水利署第三河川局(2005),「大安溪河道大斷面測量─測量成果報告」。 19. 經濟部水利署第三河川局(2007),「大安溪、筏子溪河道大斷面測量報告」。 20. 蔡衡、宋國城(2005),「九二一集集大地震-震區的地形特徵」,行政院國家科學委員會,第 83 -102 頁。 21. 錢寧、周文浩(1965),「黃河下游河床演變」,科學出版社。 22. 錢寧、張仁、周志德(1987),「河床演變學」,科學出版社。 23. 謝鑒衡(1982),「河流泥沙工程學(上冊)」,水利出版社。 24. Benson, M. A. and D. M. Thomas (1966), “A Definition of Dominant Discharge,” Bulletin International Association Scientific Hydrology, 11: 76-80. 25. Burroughs, B.A., Hayes, D.B., Klomp, K.D, Hansen, J.F., and Mistak, J (2009), “Effects of Stronach Dam removal on fluvial geomorphology in the Pine River, Michigan, United States,” Geomorphology, 110: 96-107. 26. Carlston, C. W. (1965), “The relation of free meander geometry to stream discharge and its geomorphic implicications,” Am. Jour. Sci, v. 263:864-885. 27. Finnegan, N. J.,Roe,G. ,Montgomery, D. R., and Hallet, B. (2005), “Controls on channel width of rivers: Implications for modeling fluvial incision of bedrock,” Geology, 33: 229-232. 28. Gilbert, G. K. (1914), “The Transportation of Debris by Running Water,” U. S. Geol. Survey, Prof. 86: 259. 29. Harbor, D. J. (1998),“Dynamic equilibrium between an active uplift and the Sevier River, Utah.” Geology, 106(2): 181-194. 30. Hartshorn, K., Honius, N., Dade, W. B., and Slingerland, R. L. (2002), “Climate-driven bedrock incision in an active mountain belt,” Science, 297: 2036-2038. 31. Knighton, D., (1984), Fluvial Forms and Processes. 32. Kondolf, G.M., Pie´gay, H., and Landon, N.( 2007), “Changes in the riparian zone of the lower Eygues River,France, since 1830,” Landscape Ecol, 22: 367-384. 33. Lane, E. W. (1955), “The Importance of Fluvial Morphology in Hydraulic Engineering,” Proc., ASCE, 745(81): 17. 34. Lee, Y. H. (2005), “Structures associated with the northern end of the 1999 Chi-Chi earthquake rupture, Central Taiwan Implications for seismic-hazard assessment.,” Bulletin of Seismological Society of America, 95(2): 471-485. 35. Leopold, L. B., Wolman, M. G. and Miller, J.P. (1964), Fluvial Processes in Geomorphology, San Francisco, W. H. Freeman and C., 552pp. 36. Li, Ruh-Ming and Simons, D. B., (1982), “Geomorphological and Hydraulic Analysis of Mountain Streams,” Gravel Bed Rivers, 425-441. 37. Marti, C. and Bezzola G. R. (2006), “Bed load transport in braided gravel-bed rivers,” Special publication number 36 of the international association of sedimentologists, 199-215. 38. Merritts D.J., Vincent K.R., and Wohl E.E.(1994) “Long river profiles, tectonism, and eustasy; a guide to interpreting fluvial terraces,” Journal of Geophysical Research, B, 99: 14031–14050. 39. Nixon, M. (1959), “A Study on the Bank-Full Discharge of Rivers in England and Wales,” Proc. Inst. Civil Eng., 12: 157-174. 40. Riley, S. J. (1972), “A Comparison of Morphometric Measures of Bankfull,” Journal of Hydrology, 17: 23-31. 41. Schumm, S. A. (1960), “The Effect of Sediment Types on the Shape and Stratification of Some Modern Fluvial Deposits,” Am. J. Sci. 258: 177-184. 42. Schumm, S. A. (1993), “River response to base level change: Implications for sequence stratigraphy,” Geology, 101(2) 279-294. 43. Seidl, M. A., and Dietrich, W. E. (1992), “The problem of channel Erosion into bedrock,”Catena Supplement, 23: 101-124. 44. Simoni, A.,Elmi, C. and, Picotti. V. (2003), “Late Quaternary uplift and valley evolution in the Northern Apennines: Lamone catchment,” Quaternary International, 101: 253-267. 45. Sklar, L. S., and Dietrich, W. E. (2004), “A mechanistic model for river incision into bedrock by saltating bed load,” Water Resources Research, 40(6): 63011-630121. 46. Whittaker, A. C.,Cowie, P. A., Attal, M., Tucker, G. E., and Roberts, G. P. (2007). “Bedrock channel adjustment to tectonic forcing: implications for predicting river incision rates,” Geology, 35(2): 103-106. 47. Wolman, M. G. and L. B. Leopold (1957), “River Floodplains : Some Observations on their Formation,” United States Geological Survey Professional Paper, 228-C: 109.
摘要: 
The northern segment of Chelunpu fault passed through Dajia and Daan River. It induced 11.2 m liftings near Shinkang Dam, 15 m at Meizih Bridge and 5~6 m in Zhuolan after 921 earthquake. Furthermore, the stratum lifting has become the main factor of river morphology. The earthquake has already occurred for over ten years since 1999, and the behavior of sediment transport, which caused the change of river morphology in Dajia and Daan basin has been changed. Therefore, the purpose of the study was to analyze the changing process of river morphology, river planform, longitudinal, lateral changing and quantification of souring of the channel bed. The study chosed six channel characteristic factors, which are channel profile, river width, cross-section area, swinging of main channel and unit stream power, to analyze the behavior of Daan and Dajia River during the past ten years.
The study discusses the change of the river morphology which was due to the 921 earthquake. by analyzing the orthophoto base maps, aerial photos and the river cross section data over pass 10 years. Finally, we found the river morphology changing process is quite different between Dajia and Daan River. The sediment deposition in Shinkang Dam result in baselevel uplifting of upstream reach; therefore, the incision rate of the uplifting block reach in Dajia River are less than the uplifting reach in Daan River. Furthermore, the earthquake lead to rapidly block uplifting formed the knick point and headcutting in this reach. Because the different channel conditions such as positions, geology and the knick point in the watershed. It caused the different responses of river morphology.

車籠埔斷層北段通過大甲溪及大安溪,在九二一地震時造成石岡壩附近垂直位移達11.2公尺,梅子鐵橋附近垂直抬升量更達15公尺;大安溪卓蘭一帶垂直落差約也在5~6公尺,地表大幅抬升,成為地震後河相演變之主導因子。地震後至今已十餘年,上游來砂與河川輸砂行為仍有演變,促使大甲溪及大安溪流域河道型態改變。本研究選取六個因子,針對河道之平面型態、縱橫向及量化其河道斷面之沖刷潛勢,以分析探討河相演變之不同。其中河床演變特性因子分別為:河道平面型態、主深槽高程、槽變量、河寬、兩期斷面積變化及單位河川功率。
本研究利用地震後至今各期影像及大斷面測量資料,進行河道特性分析,探討河相演變之成因。結果得知大甲溪與大安溪河相演變過程並不相同,石岡壩水庫之淤砂如同侵蝕基準面上升,使大甲溪抬升段河道的下切幅度,無須達到與大安溪相同即可取得平衡。此外,地震造成河道快速抬升,使斷層出露處形成遷急點與溯源侵蝕的現象。河道因其在集水區中之位置、地質條件不同,及遷急點是否突破抬升段之不同,造成河相演變上會有不同之反應。
URI: http://hdl.handle.net/11455/34874
其他識別: U0005-0508201011161300
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.