Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34986
標題: Application of rainfall erosion index to investigate the suitable construction months for slopeland development and calculate the temporary sedimentation amoutnt
應用降雨沖蝕指數探討坡地開發施工期之選擇與臨時性沉砂量體計算
作者: Chen, Yen-Cheng
陳彥丞
關鍵字: temporary sedimentation pond;臨時性沉砂池;Sedimentation yield;USLE;rainfall erosion index;Monthly percentage distribution of rainfall erosion index;泥砂生產量;通用土壤流失公式;降雨沖蝕指數;降雨沖蝕指數特性分區之月分配百分比
出版社: 水土保持學系所
引用: 1.李錦育,2010,「生態工程」五南圖書出版股份有限公司, P.144~P.229。 2.李錦育,2010,「台灣地區氣象資料庫」睿煜出版社, P.15~P.301。 3.行政院農業委員會水土保持局編印,2003,「水土保持技術規 範」,P.35~P.36。 4.吳嘉俊、盧光輝、林俐玲,1996,「土壤流失量估算手冊」,國立 屏東技術學院,P.32~P.41。 5.洪麗娟,2009「1996-2008 年台灣降雨的特性分析」,國立中 央大學大氣物理研究所碩士論文,P.13~P.19。 6.徐森雄、王香云、朱芷萱、孫沛瑜,2006, 臺灣西南部地區 之降雨分佈特性,P.9~P.19。 7.陳樹群、簡如宏、馮智偉、巫仲明,1998,「本土化土壤沖蝕 模式之建立」,中華水土保持學報,29(3):P.233-P.247。 8.黃俊德,1977a,台灣中部降雨沖蝕指數之研究。中華水土保 學報8(1):P.1~P.11。 9.黃俊德,1978,台灣降雨沖蝕指數之研究(四)台灣北部之降雨 沖蝕指數。中華水土保學報9(1):P.67~P.74。 10.黃俊德,1979,台灣降雨沖蝕指數之研究。中華水土保學報 (1):P.127~P.144。 11.黃振傑,2007,「沉砂池泥砂沉降特性之研究」,逢甲大學水利 工程學系碩士論文,P.7~P.11。 12.楊婉嘉,2005, 「土壤沖蝕指數模式之建置與應用」,國立屏東 科技大學水土保持系碩士論文,P.11。 13.盧昭堯、吳藝昀,2003,「台灣天然雨滴粒徑分佈及年等降雨 沖蝕指數圖之修訂」,國立中興土木工程學系研究所碩士論文,P.68~P.84。 14.Foster, G.R.,D.K. McCool,K.G. Renard, and W.C. Moldenhauer.1981, "Conversion of universal Soil loss equation to SI metric units", Journal of Soil and Water Conservation Nov.-Dec.:355-359. 15.Huang, C. T.1984. The Rainfall Erosion Index in Taiwan. Proc.Of Sino-Korea Bilateral Symposium on Soil and Water Conservation of Sloped Farm Land. 59-70, National Science Counncil,Taipei. 16.Salles, C., J. Poesen and D. Sempere-Torres.2002. Kinetic Energy of Rain and Its Functional Relationship with Intensity.J.Hydrol 257,256-270 . 17.Wu, C.C. and A.B. Wang.2001,“Effect of slope steepness on soil loss for steep slopes”, Proc. International Symposium of Soil Erosion Research for the 21th Century. Ed. J.C. Ascough II and D.C. Flanagan. Jan. 3-5, 2001, Honolulu, Hawaii, USA: 20-23. 18.Wischmeier, W.H.1959. A Rainfall Erosion Index for A Universal Soil Loss Equation. Soil Science Society of American Proceeding, 23:246-249. 19.Wischmeier, W.H. and D.D. Smith. 1965. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation, Agric. Handbook No.282, USDA, Washington, D.C.47pp. 20.Wischmeier, W.H. and D.D. Smith.1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Department of Agricultural, Agric. Handbook No.537, USDA, Washington, D.C.58pp. 21.Wischmeier, W.H., C.B. Johnson, and B.V. Cross. 1971. A Soil Erodibility Nomograph for Farmland and Construction Sites, Journal of Soil and Water Conservation, 26:189-193. 22.Wischmeier, W.H., D.D. Smith, and R.E. Uhland.1958. Evaluation of Factors in the Soil Loss Equation. Agriculture Engineering, 39:458-462, 474. 23.Yeh,H.-C., and Y.-L. Chen, 1998: Characteristics of the rainfall distribution over Taiwan during TAMEX. J. Appl. Meteor., 37, 1457–1469 參考網站 中央氣象局:http://www.cwb.gov.tw/V6/index.htm
摘要: 
Due to the topographical constraints, excavation and soil preparation are necessary during developing a large area of the building, which will cause erosion disaster. As the result, it is necessary to construct a temporary sedimentation pond. According the handbook of soil loose estimantion, the seasonal rainfall distribution is different in vary regions, the annual rainfall erosion is often unable to describe the erosion potential of seasonal rainfall in the region within one year. If we want to base on the seasonal rainfall erosion characteristics within one year, as the development, site preparation and suitable soil and water conservation practice, the monthly rainfall erosion index distribution is necessary.
This study focused on the development of a small area, the soil and water conservation construction period is within three months. The 10 meteorological partition was based on literatures. The rainy season and non-rainy season were also classified. The monthly rainfall erosion index distribution for 10 meteorological regions was constructed. Overlaping the rainy and non-rainy season with monthly rainfall erosion index distribution, we will sort out the best construction period and worest construction period. The soil loss of the whole year, the best construction period, and worst construction period were calculated according the monthly rainfall erosion index distribution and parmeters retrived from Soil Loss Prediction Handbook respectively. The sedimentation yields during the construction period were also calculated. From the results , the rationality of temporary sedimentation pond volumn will be discussed.
The important conclusions of this study are following:
(1) Inappropriate construction period was mainly from June to September, this period is rainy and typhoon season, compared with other months, rainfall and rainfall erosion index are highest .
(2) October to January is non-rainy season mainly in the central and southern region, rainfall erosion index is the least, so it is the most suitable months for construction. December to March has least rainfall in eastern and northern area (Keelung exception), rainfall erosion index characteristics of the partition of the monthly percentage distribution is minimum, therefore this period is most suitable for the construction.
(3)Keelung is affected by the northeast monsoon, resulting in raining throughout the whole year, however, the typhoon brought heavy rain rainfall intensity is greater affected than the northeast monsoon drizzle, the typhoon season monthly rainfall erosion index slightly higher than other month during the northeast monsoon rainfall erosion index, it is not suitable for the construction period from August to October.
(4) USLE was applied to calculate sedimentation yield for the base of temporary sedimentation pond design. If we use the whole year Rm, which will over estimate the soil loss.
(5) If the construction was conducted during the best period, which will reduce the 1/3 soil loss, and the tempery sedimentation pond volumn can be reduced.

由於山坡地開發受地形限制,要開發出大面積建築基地,經常需整地而進行大挖大填之土方工程,而造成於施工時產生嚴重水土流失,故需於開發中設置臨時性沉砂設施。土壤流失量估算手冊敘述由於各水土保持計畫區之雨量分布之季節及雨季時間長短不一,因此年降雨沖蝕往往無法描述一地區一年內各季之降雨沖蝕潛能特性。若要以一年內各季的降雨沖蝕特性為依據,做為開發、整地或適時施予水土保持處理的參考時,則須依據計畫區年降雨沖蝕指數之月分布資料。
本研究主要針對小面積開發,水土保持施工期程為三個月內之基地,依據十個氣候分區為本研究區域,並由相關氣象文獻,歸納出十個氣候分區代表測站之雨季及非雨季,且將十個氣候分區代表測站之月平均降雨沖蝕指數結果,統計出降雨沖蝕指數月分配百分比,由上述兩種方法經統計重疊相同月份後,整理出較佳施工期及應避免施工期;以全年、較佳施工期和應避免施工期之降雨沖蝕指數月百分比,依據水土保持技術規範第35條,採用通用土壤流失公式進行基地土壤流失量估算,各參數值係依據『水土保持技術規範』、『水土保持手冊』,及土壤流失量估算手冊,進行估算,並依據土保持技術規範第92條,計算臨時沉砂設施之泥砂生產量估算值,進行案例分析比較,以了解臨時性沉砂池量體計算之合理性。
本研究所得之重要結論為:
(一)、研究條件下應避免施工期主要集中於6~9月,此段期間為台灣梅雨及颱風季節,與其他月份相比,降雨量及降雨沖蝕指數特性分區之月分配百分比明顯為最高。
(二)、10~2月主要為中、南部之非雨季,降雨沖蝕指數特性分區之月分配百分比為最低之期間,故為較佳施工期,其東、北部地區12~3月為降雨量最少之時期(基隆地區例外),降雨沖蝕指數特性分區之月分配百分比最低之期間,故此時期為較佳施工期。
(三)、基隆因受東北季風之影響最鉅,造成全年皆有雨,但颱風所帶來的豪雨其降雨強度較東北季風之細雨為大,故颱風季節之月降雨沖蝕指數略高於東北季風期間之月降雨沖蝕指數,故應避免施工期為8~10月。
(四)、本研究條件下以 USLE計算臨時性沉砂池,其降雨沖蝕指數(Rm)採一整年之數值,將會高估其土壤流失量之量體。
(五)、降雨沖蝕指數採用本研究統計出較佳施工期程進行計算,土壤流失量比於利用全年之土壤流失量體減少1~3倍,及應避免施工期計算之土壤流失量體減少1~2倍。
URI: http://hdl.handle.net/11455/34986
其他識別: U0005-0207201210280200
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.