Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35003
標題: 台中大坑地區礫石邊坡地形演化之數值模擬
A numerical simulation of the geomorphological evolution of the gravel slopes at Da-keng in Taichung
作者: 劉彥旻
Liu, Yen-Min
關鍵字: Slope evolution model;邊坡演化模型;diffusion model;advection model;擴散模型;平流模型
出版社: 水土保持學系所
引用: 1.中央地質調查所,「集水區地形及地質資料庫成果查詢系統」,http://gwh.moeacgs.gov.tw/gwh/gsb97-2/sys9/。 2.王禎麟(2003),「斜坡土體滲流崩壞及轉化為土石流之過程」,國立中央大學土木工程研究所碩士論文。 3.王鑫(1988),「地形學」,聯經出版事業公司,第113頁。 4.行政院農業委員會林務局南投林區管理處(2008),「臺中市1402號區外保安林整體調查規劃」。 5.何欣眉(2008),「非凝聚性土石壩滲流及溢流破壞之實驗探討」,國立中央大學土木工程研究所碩士論文。 6.何春蓀(1986),「台灣地質概論-台灣地質圖說明書」,經濟部中央地質調查所出版,第100頁。 7.吳仁明(2007),「礫石坡面土石流發生機制之探討」,中興大學水土保持學系博士論文。 8.呂岡侃、徐美玲(2004),「南投縣九九峰土石流發生區之地形特徵」,地理學報,第38期,第1-16頁。 9.林俊全、鄭遠昌、任家弘(2007),「台灣苗栗火炎山地區的邊坡沖蝕特性之研究」,國立臺灣大學地理學系地理學報,第15期,第63-79頁。 10.姜壽浩(2006),「以局部穩定條件率定之土壤厚度估測模式」,國立台灣大學地理環境資源學系碩士論文。 11.徐美玲(1999),「階地邊坡形態與地形作用之關係」,地理學報,第26期,第1-12頁。 12.徐美玲(2008),「台灣的地形」,遠足文化,第102-103、182-185頁。 13.陳培源(2008),「台灣地質」,台灣省應用地質技師公會出版,第20-12頁。 14.陳燕龍(2009),「應用現地掃描與攝影測量於空間土石變異量之可行性研究-以藤枝林道3.5K下方坡面為例」,國立中興大學土木工程學系碩士論文。 15.陳聯光(1999),「溯源沖刷對河道演變分析之研究」,國立中興大學水土保持學系博士論文。 16.趙偉智(1999),「以擴散模式模擬河流縱剖面探討蘭陽溪扇階之演育」,國立成功大學地球科學研究所碩士論文。 17.蔡衡(2004) ,「台灣地區河階地形之複合對比」,國立成功大學地球科學研究所碩士論文。 18.鄭遠昌(2004),「地形變遷之研究~以苗栗火炎山地區為例」,國立台灣大學地理環境資源學系碩士論文。 19.蕭沛佳、顧承宇、謝平城(2007),「不連續變形分析法於礫石型土石流之應用」,水土保持學報,第39卷,第1期,第29-47頁。 20.賴志凱(2003),「地面雷射掃瞄儀的精度分析與檢定」,國立成功大學測量及空間資訊學系碩士論文。 21.Carson M. A. and Kirkby M. J. (1972), “Hillslope form and process,” Cambridge university press, pp.59-61. 22.Clarke, B. A., and Burbank, D. W. (2010), “Evaluating hillslope diffusion and terrace riser degradation in New Zealand and Idaho,” Journal of Geophysical Research, 115: 1-17. 23.Culling, W. (1960), “Analytical theory of erosion,” Journal of Geology, 68: 336-344. 24.Davis, W. M. (1899), “The Geographical Cycle,” The Geographical Journal, pp.481-504. 25.Dietrich, W .E., Reiss, R., Hsu, M., and Montgomery, D. R., 1995, “A process-based model for colluvial soil depth and shallow landsliding using digital elevation data,” Hydrological Processes, 9: 383-400. 26.Dietrich, W. E. and Perron T. (2006) , “The search for a topographic signature of life,” Nature, 439(26):411-418. 27.Fernandes, N. F. and Dietrich, W. E., 1997, “Hillslope evolution by diffusive processes: the timescale of equilibrium adjustments,” Water Resources Research, 33(6): 1307-1318. 28.Gardner , T. W., 1983, “Experimental Study of Knickpoint and Longitudinal Profile Evolution in Cohesive, Homogeneous material,” Geological Soc America Bulletin, 94: 664-672. 29.Heimsath, A. M., Furbish, D. J., and Dietrich, W. E. (2005), “The illusion of diffusion: Field evidence for depth-dependent sediment transport,” Geological Society of America, 33: 949–952. 30.Kirkby, M. J. (1971), “Hillslope process-response models based on the continuity equation,” Special Publication Institute of British Geographers, 3: 15-30. 31.Kooi, H., and Beaumont, C. (1994), “Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction,” Journal of Geophysical Research, 99(B6): 191-209. 32.Martin Y. and Church m. (1997), “diffusion in landscape development models: on the nature of basic transport relations,” Earth Surface Processes and Landforms, 22:273-279. 33.Martin, Y. (2000), “Modelling hillslope evolution: linear and nonlinear transport relations,” Geomorphology, 34: 1-21. 34.Pelletier, J. D. (2008), “Quantitative Modeling of Earth Surface Processes Cambridge,” Cambridge University Press, 296p. 35.Penck, W. (1924) Die morphologische analyse : Journal Engelhorns, 283p. 36.Reneau, S. L., and Dietrich, W. E. (1991), “Erosion rates in the southern oregon coast range: Evidence for an equilibrium between hillslope erosion and sediment yield,” Earth Surface Processes and Landforms, 16: 307-322. 37.Roering, J. J., Kirchner, J. W., and Dietrich, W. E. (1999), “Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology,” Water Resources Research, 35: 853-870. 38.Skianis, G. A., Vaiopoulos, D., and Evelpidou, N. (2008), “Solution of the linear diffusion equation for modelling erosion processes with a time varying diffusion coefficient,” Earth Surface Processes and Landforms, 33: 1491-1501. 39.Young, A. (1972), “Slopes,” Edinburg: Oliver and Boyd, 288p.
摘要: 
本研究結合擴散模型與平流模型,建構適合描述現地的邊坡演化模型,探討邊坡變化量、邊坡後退形態與模擬邊坡演化過程,並以現地邊坡測量及數值高程地形進行案例分析。本研究引用的邊坡演化模型可用於描述減坡後退與平行後退的邊坡後退形態,並探討不同擴散和平流比例的設定對邊坡演化過程的影響,並以台中市大坑礫石邊坡為演化案例,進行邊坡測量及蒐集數值高程地形資料,將資料進行迴歸分析並比較各期邊坡變化,以模型擬合其邊坡演化形態,求得相關模型係數,並提出非均質邊坡演化模擬方法,最後進行邊模預測之模型應用。本研究僅探討台中大坑地區局部的邊坡演化情形,其結果顯示近幾年該邊坡演化多屬於減坡後退。

This study coupled the diffusion and advection model to establish an evolution model for description of slope evolution, including amount of slope movement, slope retreat and simulation of slope evolution processes. The field survey of the slope and digital terrain models were used for the case study. The slope evolution model adopted in this study can be used to describe the evolution of slope decline and parallel retreat. The influences of slope evolution in diffusion and advection different proportion hypothesis are this study discussion. For the case study of the gravel slope in Da-keng, Taichung, the field surveyed slope and had collection of digital terrain models, regression analysis and compares of slope movement. This study simulated the slope evolution for model coefficients and proposed a method for simulation of the non-homogeneous slope. This study finally predicted that slope movement. The results revels that the slope evolution of the Da-keng test site in Taichung is better classified as parallel retreat.
URI: http://hdl.handle.net/11455/35003
其他識別: U0005-1008201118131000
Appears in Collections:水土保持學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.