Please use this identifier to cite or link to this item:
標題: 應用地電阻剖面法調查板岩地層之水分變化-以奧萬大崩塌地為例
Investigation of Water Variations of Slate Strata Using ERT - A Case Study of a Landslide in Aowanda
作者: 蕭仲富
Shiao, Chung-Fu
關鍵字: 地電阻法;Electrical resistivity tomography;地層偵測;水分變化;bedrock edge detection;soil moisture variation
出版社: 水土保持學系所
引用: 1.梅興泰、鄭富書、蔡道賜,2006,「地電阻影像剖面法對非均質地下實體之模擬分析」,技術期刊,第21卷,第4期,第369-382頁。 2.楊証傑,2005,「ERT在地工調查應用之問題評析與空間解析度探討」,國立交通大學土木工程學系碩士論文。 3.劉杰,2008,「起伏地形電阻率剖面異常研究」,中南大學地球探勘與信息技術系碩士論文。 4.中央地調所,2002,「五萬分之一台灣地質圖霧社圖幅」。 5.中央氣象局,2009-2011,「奧萬大雨量站」。 6.台灣山林悠遊網: 7.Amato, M., Bitella, G., Rossia, R., Gomez, J, A., Lovelli, S., Gomes, J, A., 2009. Multi-electrode 3D resistivity imaging of alfalfa root zone. European Journal of Agronomy. 31:213-222. 8.Archie, G,E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146,54-62 9.Brunet, P., Clement, R., Bouvier, C., 2010. Monitoring soil water content and deficit using electrical resistivity tomography (ERT) – A case study in the Cevennes area, France. Journal of Hydrology, 380: 146-153. 10.Cassiani, G., Bruno, V., Villa, A., Fusi, N., Binley, A.M., 2006. A saline trace test monitored via time-lapse surface electrical resistivity tomography. Journal of Applied Geophysics, 59: 244-259. 11.Claerbout, J., Muir, F., 1973. Robust modeling with erratic data. Geophysics, 38(5): 826-844. 12.Clement, R., Descloitres, M., Gunther, T., Oxarango, L., Morra, C., Laurent, J, P., Gourc, J, P., 2010. Improvement of electrical resistivity tomography for leachate injection monitoring. Waste Management, 30(3): 452-464. 13.Clement, R., Descloitres, M., Gunther, T., Ribolzi, O., Legchenko, A., 2009. Influence of shallow infiltration on time-lapse ERT: Experience of advanced interpretation. C. R. Geoscience, 341: 886-898. 14.Edwards, L.S., 1977. A modified pseudosection for resistivity and ip. geophysics, 42(5): 1020-1036. 15.Ellis, R.G., Oldenburg, D.W., 1994. Applied geophysical inversion. geophys, 166: 5-11. 16.Friedman, S.P., 2005. Soil properties influencing apparent electrical conductivity: a review. Computers and Electronics in Agriculture, 46: 45-70. 17.Hsu, H.L., Brian, J.Y., Chen, C.C., Chen, Y.G., 2010. Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan. Geomorphology, 114: 406-414. 18.Huisman, J.A., Rings, J., Vrugt, J.A., Sorg, J., Vereecken, H., 2010. Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. Journal of Hydrology, 380: 62-73. 19.Koch, K., Wenninger, J., Uhlenbrook, S., Bonell, M., 2009. Joint interpretation of hydrological and geophysical data: Electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany. Hydrological Process, 23: 1501-1513. 20.Lines, L.R., Treitel, S., 1984. Tutorial a review of least-sqoares inversion and its application to geophysical problems. Geophysics Prospecting, 32: 159-186. 21.Loke, M.H., 2010. Tutorial : 2-D and 3-D electrical imaging surveys. 22.Nguyen, F., Garambois, T., S. , Jongmans, D., Pirard, E., Loke, M.H., 2005. Image processing of 2D resistivity data for imaging faults. Journal of Applied Geophysics, 57: 260-277. 23.Olayinka, A,I., Yaramanci, U., 2000. Use of block inversion in the 2-D interpretation of apparent resistivity data and its comparison with smooth inversion. Journal of Applied Geophysics. 45:63-81. 24.Rein, A., Hoffmann, R., Dietrich, P., 2004. Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements. Journal of Hydrology, 285: 215-232. 25.Sauer, M, C, J., Southwick, P, F., Spiegler, K, S., Wyllie, M, R, J., 1955. Electrical Conductance of Porous Plugs ion exchange resin-solution systems. Industrial and Engineering Chemistry, 47(10): 2187-2193. 26.Schwartz, B, F., Schreiber, M, E., 2009. Quantifying potential recharge in mantled sinkholes using ERT. Ground Water, 47(3): 370-381. 27.Schwartz, B, F., Schreiber, M, E., Yan, T., 2008. Quantifying field-scale soil moisture using electrical resistivity imaging. Journal of Hydrology, 362: 234-246. 28.Shah, P, H., Singh, D, N., 2005. Generalized Archie’s Law for Estimation of Soil Electrical Conductivity. Journal of ASTM International, 2(5). 29.Werban, U., Hagrey, S, A., Rabbel, W., 2008. Monitoring of root-zone water content in the laboratory by 2D geoelectrical tomography. J. Plant Nutr. Soil Sci, 171: 927-935. 30.Wolke, R., Schwetlick, H., 1988. Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons. SIAM J. SCI, 9(5): 907-921. 31.Loke, M. H., 2002. RES2DMOD ver.3.01, Geotomo Software , user''s manual. 32.Loke, M. H., 2010. RES2DINV ver.3.59, Geotomo Software , user''s manual. 33.Spectrum Technologies, Inc., 2009. TDR-300 Soil moisture meter product manual.
本研究主要對於板岩崩塌區進行地電阻法(Electrical Resistivity Tomography, ERT)試驗,探討崩塌區於不同地表情形下之水分變化情形為何,試驗地點選定於南投縣奧萬大聯外道路8.4k之崩塌地,分別採用地電阻法與土壤含水率測定儀對於不同時期(乾季、濕季)之林地與裸露地地表與地下淺層之土壤含水率進行量測分析,其中研究之分析方法分別採用:Time-lapse、最大梯度方向法(Maximum of Directional Gradient, MDG法)與Archie’s law之經驗公式對於地電阻資料分別進行地層檢測與土壤體積含水率之估算量化分析。於研究結果發現,地電阻資料能夠約略檢測出植物根系深度,此外使用MDG法能夠有效檢測出之岩層分層情形,此外使用Archie’s law經驗公式,得出當地電阻與土壤含水率之對照表,另外結合Time-lapse與MDG法之結果,繪製該區簡易地下水文示意圖。

In this study, the Electrical Resistivity Tomography (ERT) method is applied in landslide investigation. The variation of ground water table in different surfaces can be found. The tests were performed in a landslide area in Aowanda at 8.4K of the connection road. The ERT data and soil moisture meter (TDR-300) were used to analyze the soil moisture rate of underground shallow layer in forest land and exposed land. The analysis methods adopted include “time-lapse”, “maximum of directional gradient” algorithm (MDG) and empirical Archie''s law for investigating the variation rate of soil moisture. The results indicate the depth of plant roots can be approximately estimated using the ERT method and the stratum can be detected accurately using the MDG method. Moreover, the empirical Archie's law is employed to figure out a corresponding table for the electrical resistivity and moisture of the soil. From this table, the combined results of the time-lapse method and the MDG method were used to sketch a simplified diagram of underground hydrogeological profile for reference.
其他識別: U0005-2007201119500600
Appears in Collections:水土保持學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.